Background: The signaling pathways imposing hormonal control over adipocyte differentiation are poorly understood. While insulin and Akt signaling have been found previously to be essential for adipogenesis, the relative importance of their many downstream branches have not been defined. One direct substrate that is inhibited by Akt-mediated phosphorylation is the tuberous sclerosis complex 2 (TSC2) protein, which associates with TSC1 and acts as a critical negative regulator of the mammalian target of rapamycin (mTOR) complex 1 (mTORC1). Loss of function of the TSC1-TSC2 complex results in constitutive mTORC1 signaling and, through mTORC1-dependent feedback mechanisms and loss of mTORC2 activity, leads to a concomitant block of Akt signaling to its other downstream targets.
Methodology/principal Findings: We find that, despite severe insulin resistance and the absence of Akt signaling, TSC2-deficient mouse embryo fibroblasts and 3T3-L1 pre-adipocytes display enhanced adipocyte differentiation that is dependent on the elevated mTORC1 activity in these cells. Activation of mTORC1 causes a robust increase in the mRNA and protein expression of peroxisome proliferator-activated receptor gamma (PPARgamma), which is the master transcriptional regulator of adipocyte differentiation. In examining the requirements for different Akt-mediated phosphorylation sites on TSC2, we find that only TSC2 mutants lacking all five previously identified Akt sites fully block insulin-stimulated mTORC1 signaling in reconstituted Tsc2 null cells, and this mutant also inhibits adipogenesis. Finally, renal angiomyolipomas from patients with tuberous sclerosis complex contain both adipose and smooth muscle-like components with activated mTORC1 signaling and elevated PPARgamma expression.
Conclusions/significance: This study demonstrates that activation of mTORC1 signaling is a critical step in adipocyte differentiation and identifies TSC2 as a primary target of Akt driving this process. Therefore, the TSC1-TSC2 complex regulates the differentiation of mesenchymal cell lineages, at least in part, through its control of mTORC1 activity and PPARgamma expression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2703782 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0006189 | PLOS |
Int J Mol Sci
December 2024
Department of Pharmacology, Physiology and Legal and Forensic Medicine, Faculty of Health and Sport Science, University of Zaragoza, 50009 Zaragoza, Spain.
MicroRNAs play a pivotal role in the regulation of adipose tissue function and have emerged as promising therapeutic candidates for the management of obesity and associated comorbidities. Among them, miR-1 could be a potential biomarker for metabolic diseases and contribute to metabolic homeostasis. However, thorough research is required to fully elucidate the impact of miR-1 on human adipocyte thermogenesis and metabolism.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Institute for Cardiovascular Prevention (IPEK), Faculty of Medicine, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.
MicroRNAs (miRNAs) are short sequences of single-stranded non-coding RNAs that target messenger RNAs, leading to their repression or decay. Interestingly, miRNAs play a role in the cellular response to low oxygen levels, known as hypoxia, which is associated with reactive oxygen species and oxidative stress. However, the physiological implications of hypoxia-induced miRNAs ("hypoxamiRs") remain largely unclear.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Biochemistry and Molecular Biology, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing Normal University, Beijing 100875, China.
Hypertension is a multifactorial and complex disease influenced by genetic and environmental factors, and it has become one of the most serious public health challenges. This study aimed to investigate the changes in hypertension based on urinary proteome. The stroke-prone spontaneously hypertensive rats (SHRSPs) model was used to examined urinary proteome changes during the development of hypertension.
View Article and Find Full Text PDFSci Rep
January 2025
Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), National Institute of Advanced Science and Technology (AIST), Tsukuba, Japan.
Obesity, a major risk factor for various metabolic diseases, often results in dysfunctional white adipose tissue and altered adipogenesis leading to ectopic fat accumulation, inflammation, and insulin resistance. On the other hand, cashew (Anacardium occidentale L.) nut worldwide consumption and production is increasing steadily, which augments the mass of byproducts to be discarded.
View Article and Find Full Text PDFJ Craniofac Surg
January 2025
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University.
Lipomas are benign soft tissue tumors composed of mature adipocytes, commonly found in subcutaneous tissues. Despite their prevalence in various body regions, they are relatively rare in the oral and maxillofacial regions. This study retrospectively analyzed the clinical and imaging characteristics, as well as the treatment outcomes of 57 patients diagnosed with lipoma.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!