Background: Although the association of high temperatures with mortality is well-documented, the association with morbidity has seldom been examined. We assessed the potential impact of hot weather on hospital admissions due to cardiovascular and respiratory diseases in New York City. We also explored whether the weather-disease relationship varies with socio-demographic variables.

Method: We investigated effects of temperature and humidity on health by linking the daily cardiovascular and respiratory hospitalization counts with meteorologic conditions during summer, 1991-2004. We used daily mean temperature, mean apparent temperature, and 3-day moving average of apparent temperature as the exposure indicators. Threshold effects for health risks of meteorologic conditions were assessed by log-linear threshold models, after controlling for ozone, day of week, holidays, and long-term trend. Stratified analyses were used to evaluate temperature-demographic interactions.

Results: For all 3 exposure indicators, each degree C above the threshold of the temperature-health effect curve (29 degrees C-36 degrees C) was associated with a 2.7%-3.1% increase in same-day hospitalizations due to respiratory diseases, and an increase of 1.4%-3.6% in lagged hospitalizations due to cardiovascular diseases. These increases for respiratory admissions were greater for Hispanic persons (6.1%/ degrees C) and the elderly (4.7%/ degrees C). At high temperatures, admission rates increased for chronic airway obstruction, asthma, ischemic heart disease, and cardiac dysrhythmias, but decreased for hypertension and heart failure.

Conclusions: Extreme high temperature appears to increase hospital admissions for cardiovascular and respiratory disorders in New York City. Elderly and Hispanic residents may be particularly vulnerable to the temperature effects on respiratory illnesses.

Download full-text PDF

Source
http://dx.doi.org/10.1097/EDE.0b013e3181ad5522DOI Listing

Publication Analysis

Top Keywords

high temperatures
12
hospital admissions
12
cardiovascular respiratory
12
extreme high
8
cardiovascular diseases
8
admissions cardiovascular
8
respiratory diseases
8
york city
8
meteorologic conditions
8
apparent temperature
8

Similar Publications

Cold-temperate and Arctic hard bottom coastal ecosystems are dominated by kelp forests, which have a high biomass production and provide important ecosystem services, but are subject to change due to ocean warming. However, the photophysiological response to increasing temperature of ecologically relevant species, such as Laminaria digitata, might depend on the local thermal environment where the population has developed. Therefore, the effects of temperature on growth rate, biochemical composition, maximum quantum yield, photosynthetic quotient and carbon budget of young cultured sporophytes of Laminaria digitata from the Arctic at Spitsbergen (SPT; cultured at 4, 10 and 16 °C) and from the cold-temperate North Sea island of Helgoland (HLG; cultured at 10, 16 and 22 °C) were comparatively analyzed.

View Article and Find Full Text PDF

Two-dimensional Transition Metal Dichalcogenides (2D TMDs) have garnered significant attention in the field of materials science due to their remarkable electronic and optoelectronic properties, including high carrier mobility and tunable band gaps. Despite the extensive research on various TMDs, there remains a notable gap in understanding the synthesis techniques and their implications for the practical application of monolayer tungsten disulfide (WS2) in optoelectronic devices. This gap is critical, as the successful integration of WS2 into commercial technologies hinges on the development of reliable synthesis methods that ensure high quality and uniformity of the material.

View Article and Find Full Text PDF

Washable Superhydrophobic Cotton Fabric with Photothermal Self-Healing Performance Based on Nanocrystal-MXene.

ACS Appl Mater Interfaces

January 2025

Colour Science and Textile Chemistry Research Center, College of Textiles and Clothing, Qingdao University, Qingdao, Shandong 266071, China.

Superhydrophobic fabrics suffer from being commonly penetrated by moisture after laundering, seriously deteriorating their water repellency after air drying. Numerous researchers have successfully recovered superhydrophobicity by drying in fluid ovens; however, high energy consumption and equipment dependence limit practical applications. Herein, the superhydrophobic photothermal self-healing cotton fabric (SPS cotton fabric) was fabricated by depositing a composite layer of cellulose nanocrystal-MXene (C-MXene) and polyacrylate (PA) coatings on the cotton cloth.

View Article and Find Full Text PDF

An exploratory survey assessing the determinants of heat stress and heat strain in the Canadian mining industry from the worker's perspective.

J Occup Environ Hyg

January 2025

Human and Environmental Physiology Research Unit, School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada.

With mines extending deeper and rising surface temperatures, workers are exposed to hotter environments. This study aimed to characterize heat stress and strain in the Canadian mining industry and evaluate the utility of the Heat Strain Score Index (HSSI), combined with additional self-reported adverse health outcomes. An exploratory web-based survey was conducted among workers ( = 119) in the Canadian mining industry.

View Article and Find Full Text PDF

The broad temperature adaptability associated with the desolvation process remains a formidable challenge for organic electrolytes in rechargeable metal batteries, especially under low-temperature (LT) conditions. Although a traditional approach involves utilizing electrolytes with a high degree of anion participation in the solvation structure, known as weakly solvation electrolytes (WSEs), the solvation structure of these electrolytes is highly susceptible to temperature fluctuations, potentially undermining their LT performance. To address this limitation, we have devised an innovative electrolyte that harnesses the interplay between solvent molecules, effectively blending strong and weak solvents while incorporating anion participation in a solvation structure that remains mostly unchanged by temperature variations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!