Hydrodynamic size of DNA/cationic gemini surfactant complex as a function of surfactant structure.

Gen Physiol Biophys

Department of Chemical Theory of Drugs, Faculty of Pharmacy, Comenius University, Kalinciakova 8, 832 32 Bratislava, Slovakia.

Published: June 2009

The present study deals with the determination of hydrodynamic size of DNA/cationic gemini surfactant complex in sodium bromide solution using the dynamic light scattering method. Cationic gemini surfactants with polymethylene spacer of variable length were used for the interaction with DNA. The scattering experiments were performed at constant DNA and sodium bromide concentrations and variable surfactant concentration in the premicellar and micellar regions as a function of surfactant spacer length. It was found that the DNA conformation strongly depends on the polymethylene spacer length as well as on the surfactant concentration relative to the surfactant critical micelle concentration. Gemini surfactant molecules with 4 methylene groups in the spacer were found to be the least efficient DNA compacting agent in the region above the surfactant cmc. Gemini molecules with the shortest spacer length (2 methylene groups) and the longest spacer length (8 methylene groups) investigated showed the most efficient DNA compaction ability.

Download full-text PDF

Source

Publication Analysis

Top Keywords

spacer length
16
gemini surfactant
12
methylene groups
12
surfactant
9
hydrodynamic size
8
size dna/cationic
8
dna/cationic gemini
8
surfactant complex
8
function surfactant
8
sodium bromide
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!