Elimination of peripheral tumors by adoptively transferred tumor-specific T cells may require killing of cancer cells and tumor stromal cells. Tumor Ags are cross-presented on stromal cells, resulting in direct cytotoxic T cell (CTL) killing of both Ag-expressing cancer cells and stromal cells. Indirect killing of Ag loss variant cells also occurs. We show here that similar processes occur in a brain tumor stromal environment. We used murine cancer cell lines that express high or low levels of a peptide Ag, SIYRYYGL (SIY), recognized by transgenic 2C CD8(+) T cells. The two cell lines are killed with equivalent efficiency by 2C T cells in vitro. Following adoptive transfer of 2C T cells into mice with established SIY-Hi or SIY-Lo brain tumors, tumors of both types regressed, but low-Ag-expressing tumors recurred. High-Ag-expressing tumors contained CD11b(+) cells cross-presenting SIY peptide and were completely eliminated by 2C T cells. To further test the role of cross-presentation, RAG1(-/-) H-2(b) mice were infused with H-2(k) tumor cells expressing high levels of SIY peptide. Adoptively transferred 2C T cells are able to kill cross-presenting H-2(b) stromal cells but not H-2(k) tumor cells. In peripheral models, this paradigm led to a small static tumor. In the brain, activated 2C T cells were able to kill cross-presenting CD11b(+) cells and completely eliminate the H-2(k) tumors in most mice. Targeting brain tumor stroma or increasing Ag shedding from tumor cells to enhance cross-presentation may improve the clinical success of T cell adoptive therapies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4049/jimmunol.0802322 | DOI Listing |
Diabetes Obes Metab
January 2025
Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China.
Metabolic syndrome-related diseases frequently involve disturbances in skeletal muscle lipid metabolism. The accumulation of lipid metabolites, lipid-induced mitochondrial stress in skeletal muscle cells, as well as the inflammation of adjacent adipose tissue, are associated with the development of insulin resistance and metabolic dysfunction. Consequently, when antidiabetic medications are used to treat various chronic conditions related to hyperglycaemia, the impact on skeletal muscle lipid metabolism should not be overlooked.
View Article and Find Full Text PDFJ Cell Physiol
January 2025
Department of Pharmaceutical Sciences and Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA.
Glucose is a major source of energy for the brain. At the blood-brain barrier (BBB), glucose uptake is facilitated by glucose transporter 1 (GLUT1). GLUT1 Deficiency Syndrome (GLUT1DS), a haploinsufficiency affecting SLC2A1, reduces glucose brain uptake.
View Article and Find Full Text PDFAlzheimers Dement
January 2025
UK Dementia Research Institute at the University of Edinburgh, Edinburgh, UK.
Introduction: Cerebrovascular dysfunction plays a critical role in the pathogenesis of dementia and related neurodegenerative disorders. Recent omics-driven research has revealed associations between vascular abnormalities and transcriptomic alterations in brain vascular cells, particularly endothelial cells (ECs) and pericytes (PCs). However, the impact of these molecular changes on dementia remains unclear.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States.
In this work, we show how shape matters for the ordering of red blood cells (RBCs) at a water-air interface for both artificially rigidified and sphered cells as a model system for hereditary spherocytosis. We report enhanced long-range order for spherical RBCs over disk-shaped RBCs arising from the increased local ordering of spheres relative to disks. We show that rigidity has a greater effect on the radial distribution of spherical vs disk-shaped RBCs by slightly increasing the average distance between cells.
View Article and Find Full Text PDFChemistry
January 2025
Friedrich-Alexander-Universität Erlangen-Nürnberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg, Department of Materials Science and Engineering, Institute of Materials for Electronics and Energy Technology (i-MEET), Martensstraße 7, 91058, Erlangen, GERMANY.
Perovskite solar cells (PSCs) have recently achieved over 26% power conversion efficiency, challenging the dominance of silicon-based alternatives. This progress is significantly driven by innovations in hole transport materials (HTMs), which notably influence the efficiency and stability of PSCs. However, conventional organic HTMs like PTAA, although highly efficient, suffer from thermal degradation, moisture ingress, and high cost.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!