Background: To provide a new strategy for constructing small vascular graft, the survival conditions of endothelial progenitor cells (EPCs), which were seeded on two different groups of extracellular matrix (ECM) scaffolds were studied in vitro.
Materials And Methods: The scaffold was made with a mixture of fibrinogen, fibronectin, and laminin, which solidified to form unpressed structure. A 1N force could make it to be pressed. EPCs induced from cultures of rat mesenchymal stem cells were seeded on two different groups of ECM scaffolds: (1) pressed scaffolds; and (2) unpressed scaffolds. The survival conditions of cells on the two groups of scaffolds were reflected by properties below: cell attachment and proliferation detected by cell counting; differentiation of EPCs detected by changes in the cell morphology and the expression of endothelial marker von Willebrand factor (VWF) using immunofluorescence, immuno-blot, and real-time PCR; the two different scaffolds were characterized for their surface ultra-structures by SEM, and torques by a rheometer.
Results: The cells grew faster on the pressed scaffold (P<0.001) for the first 7 d. Furthermore, cells on the pressed scaffolds displayed more uniform shapes with morphology resembling that of endothelial cells than those on the unpressed scaffolds. VWF protein expressions were also higher in cells from the pressed scaffold. Real-time PCR showed correlated changes too. In addition, the pressed scaffold with EPCs showed the smallest torque value among all scaffolds (P<0.01).
Conclusion: Pressed ECM-like scaffold promoted the survival condition of EPC. It may be used to promote endothelialization within the next generation of vascular grafts in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jss.2009.03.018 | DOI Listing |
STAR Protoc
January 2025
Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA. Electronic address:
Hematopoietic stem cells (HSCs) generate blood and immune cells. Here, we present a protocol to differentiate human pluripotent stem cells (hPSCs) into hematopoietic progenitors that express the signature HSC transcription factors HLF, HOXA5, HOXA7, HOXA9, and HOXA10. hPSCs are dissociated, seeded, and then sequentially differentiated into posterior primitive streak, lateral mesoderm, artery endothelium, hemogenic endothelium, and hematopoietic progenitors through the sequential addition of defined, serum-free media.
View Article and Find Full Text PDFAm J Cardiol
January 2025
Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan.
A dual-therapy sirolimus-eluting and CD34+ antibody-coated Combo Stent (DTS) has been developed to enhance endothelization and capture endothelial progenitor cells; however, vessel responses following DTS implantation remain unclear. Therefore, we evaluated early- and mid-term intravascular characteristics of DTS using intravascular imaging modalities. This multicenter, prospective, observational study enrolled 88 patients (95 lesions) who underwent DTS (43 patients, 48 lesions) or sirolimus-eluting Orsiro stent (SES, 45 patients, 47 lesions) implantation.
View Article and Find Full Text PDFAntioxidants (Basel)
January 2025
Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA.
Our group has recently demonstrated that exercise intervention affects the release and function of bone marrow endothelial progenitor cell-derived extracellular vesicles (EVs) in transgenic hypertensive mice. Whether such an exercise regimen can impact circulating EVs (cEVs) remains unknown. In this study, we investigated the influence of exercise on cEV level and function.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN, USA; Institute on the Biology of Aging and Metabolism, University of Minnesota-Twin Cities, Minneapolis, MN, USA. Electronic address:
Adipose is a complex tissue comprised of adipocytes, immune cells, endothelial and progenitor stem cells. In humans, there are at least nine defined adipose depots, each containing variable numbers of genetically identified adipocyte clusters suggesting remarkable heterogeneity and potential functionality in each depot with respect to lipid metabolism. Although subcutaneous and visceral depots are commonly analyzed for biochemical and molecular functions, the mesenteric depot has been overlooked yet strongly implicated in lipid mediated immune surveillance.
View Article and Find Full Text PDFCurr Issues Mol Biol
January 2025
Department of Haematology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia.
Circulating endothelial cells (CECs) and endothelial progenitor cells (EPCs) are promising markers of vascular damage and endothelial regeneration potential. We focused on the detection of CECs and EPCs using flow cytometry with regard to analytical challenges and its suitability for routine testing. As part of a clinical validation, CECs and EPCs were measured in blood samples from 83 subjects with type 1 diabetes (T1DM), evaluating an adjuvant intervention with two different antidiabetic drugs, empagliflozin (N = 28) and semaglutide (N = 29).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!