Background: While cases of amyotrophic lateral sclerosis (ALS) or ALS-like conditions have arisen in apparent association with HMG-CoA reductase inhibitors ('statins') and/or other lipid-lowering drugs (collectively termed 'statins' in this paper for brevity), additional information is needed to understand whether the connection may be causal. The University of California, San Diego (UCSD) Statin Effects Study is a patient-targeted adverse event surveillance project focused on lipid-lowering agents, whose aim is to capitalize on patient reporting to further define characteristics and natural history of statin adverse effects (AEs), and to ascertain whether a patient-targeted surveillance system might lead to presumptive identification of previously unrecognized AEs. ALS was a candidate 'new' AE identified through this process. The aim of the analysis presented here was to examine characteristics and natural history of reported statin-associated ALS-like conditions with attention to factors that may bear on the issue of causality.
Methods: For the present analysis, we focused on cases of statin-associated ALS that were reported to our study group prior to publication of a possible statin-ALS association. Of 35 identified subjects who had contacted the UCSD Statin Effects Study group to report ALS or an ALS-like condition, 18 could not be reached (e.g. contact information was no longer valid). Six were unable to participate (e.g. due to progression of their disease). Of the 11 who could be contacted and were able to participate, one declined to give informed consent. The remaining ten, with either a formal or probable diagnosis of ALS in the context of progressive muscle wasting/weakness arising in association with lipid-lowering drug therapy, completed a mail or phone survey eliciting information about ALS symptom onset and change in association with drug use/modification and development of statin-associated AEs. We reviewed findings in the context of literature on statin antioxidant/pro-oxidant balance, as well as ALS mechanisms involving oxidative stress and mitochondrial dysfunction.
Results: All ten subjects reported amelioration of symptoms with drug discontinuation and/or onset or exacerbation of symptoms with drug change, rechallenge or dose increase. Three subjects initiated coenzyme Q10 supplementation; all reported initial benefit. All subjects reportedly developed statin AEs (not indicative of ALS) prior to ALS symptom onset, strongly disproportionate to expectation (p < 0.001). Since this reflects induction of pro-oxidant effects from statins, these findings lend weight to a literature-supported mechanism by which induction by statins of oxidative stress with amplification of mitochondrial dysfunction, arising in a vulnerable subgroup, may propel mechanisms underlying both AEs and, more rarely, ALS.
Conclusion: A theoretical foundation and preliminary clinical observations suggest that statins (and other lipid-lowering drugs) may rarely be associated with ALS in vulnerable individuals in whom pro-oxidant effects of statins predominate. Our observations have explanatory relevance extending to ALS causes that are not statin associated and to statin-associated neurodegenerative conditions that are not ALS. They suggest means for identification of a possible vulnerable subgroup. Indeed whether statins may, in contrast, confer ALS protection when antioxidant effects predominate merits examination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2165/00002018-200932080-00004 | DOI Listing |
Acta Neuropathol Commun
January 2025
Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College (PUMC) and Chinese Academy of Medical Science (CAMS), Beijing, China.
Mutations in the ANXA11 gene, encoding an RNA-binding protein, have been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS), but the underlying in vivo mechanisms remain unclear. This study examines the clinical features of ALS patients harboring the ANXA11 hotspot mutation p.P36R, characterized by late-onset motor neuron disease and occasional multi-system involvement.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Chicago, IL, 60611, USA.
Corticospinal motor neurons (CSMN), located in the motor cortex of the brain, are one of the key components of the motor neuron circuitry. They are in part responsible for the initiation and modulation of voluntary movement, and their degeneration is the hallmark for numerous diseases, such as amyotrophic lateral sclerosis (ALS), hereditary spastic paraplegia, and primary lateral sclerosis. Cortical hyperexcitation followed by in-excitability suggests the early involvement of cortical dysfunction in ALS pathology.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden.
Accurate diagnosis and monitoring of neurodegenerative diseases require reliable biomarkers. Cerebrospinal fluid (CSF) proteins are promising candidates for reflecting brain pathology; however, their diagnostic utility may be compromised by natural variability between individuals, weakening their association with disease. Here, we measured the levels of 69 pre-selected proteins in cerebrospinal fluid using antibody-based suspension bead array technology in a multi-disease cohort of 499 individuals with neurodegenerative disorders including Alzheimer's disease (AD), behavioral variant frontotemporal dementia, primary progressive aphasias, amyotrophic lateral sclerosis (ALS), corticobasal syndrome, primary supranuclear palsy, along with healthy controls.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA.
Mitochondrial function is modulated by its interaction with the endoplasmic reticulum (ER). Recent research indicates that these contacts are disrupted in familial models of amyotrophic lateral sclerosis (ALS). We report here that this impairment in the crosstalk between mitochondria and the ER impedes the use of glucose-derived pyruvate as mitochondrial fuel, causing a shift to fatty acids to sustain energy production.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Res
January 2025
CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India; Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA. Electronic address:
Optineurin/OPTN is an adapter protein that plays a crucial role in mediating many cellular functions, including autophagy, vesicle trafficking, and various signalling pathways. Mutations of OPTN are linked with neurodegenerative disorders, glaucoma, and amyotrophic lateral sclerosis (ALS). Recent work has shown that OPTN provides cytoprotection from many types of stress, including oxidative stress, endoplasmic reticulum stress, protein homeostasis stress, tumour necrosis factor α, and microbial infection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!