A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Efficient red-edge materials photosensitized by Rhodamine 640. | LitMetric

Efficient red-edge materials photosensitized by Rhodamine 640.

J Phys Chem B

Instituto de Quimica-Fisica "Rocasolano", CSIC, Serrano 119, 28006 Madrid, Spain.

Published: August 2009

We report on tunable, highly efficient and photostable solid-state dye laser emitting around 640 nm based on Rhodamine 640 incorporated into homopolymers, linear and cross-linked copolymers, and silicon-modified organic matrices. The effect on the lasing properties of both dye concentration and environmental conditions was analyzed. Under transversal pumping at 532 nm with 5.5 mJ/pulse, high-lasing efficiencies of up to 42% were recorded. The laser operation was highly stable with a drop in the laser output of approximately 20% after 100 000 pump pulses at the same position of the sample at 10 Hz repetition rate. To the best of our knowledge, these results are the topmost achieved to date for organic, inorganic, and hybrid materials doped with rhodamine 640. When the samples were incorporated into a grazing-incidence grating oscillator, narrow-line-width operation with tunning ranges of up to 40 nm was obtained.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp904419jDOI Listing

Publication Analysis

Top Keywords

rhodamine 640
12
efficient red-edge
4
red-edge materials
4
materials photosensitized
4
photosensitized rhodamine
4
0
4
640 report
4
report tunable
4
tunable highly
4
highly efficient
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!