In vivo 1H NMR spectroscopy of the human brain at high magnetic fields: metabolite quantification at 4T vs. 7T.

Magn Reson Med

Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota 55455, USA.

Published: October 2009

A comprehensive comparative study of metabolite quantification from the human brain was performed on the same 10 subjects at 4T and 7T using MR scanners with identical consoles, the same type of RF coils, and identical pulse sequences and data analysis. Signal-to-noise ratio (SNR) was increased by a factor of 2 at 7T relative to 4T in a volume of interest selected in the occipital cortex using half-volume quadrature radio frequency (RF) coils. Spectral linewidth was increased by 50% at 7T, which resulted in a 14% increase in spectral resolution at 7T relative to 4T. Seventeen brain metabolites were reliably quantified at both field strengths. Metabolite quantification at 7T was less sensitive to reduced SNR than at 4T. The precision of metabolite quantification and detectability of weakly represented metabolites were substantially increased at 7T relative to 4T. Because of the increased spectral resolution at 7T, only one-half of the SNR of a 4T spectrum was required to obtain the same quantification precision. The Cramér-Rao lower bounds (CRLB), a measure of quantification precision, of several metabolites were lower at both field strengths than the intersubject variation in metabolite concentrations, which resulted in a strong correlation between metabolite concentrations of individual subjects measured at 4T and 7T.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2843548PMC
http://dx.doi.org/10.1002/mrm.22086DOI Listing

Publication Analysis

Top Keywords

metabolite quantification
16
human brain
8
spectral resolution
8
field strengths
8
quantification precision
8
metabolite concentrations
8
metabolite
6
quantification
6
vivo nmr
4
nmr spectroscopy
4

Similar Publications

2-Methoxyestradiol (2ME) is involved in the pathogenesis of preeclampsia and antitumor activity. In addition to its low concentration in healthy human serum, presence of isomers makes quantification of 2ME for clinical research and laboratory medicine difficult. The objective of this study was to develop a highly sensitive and accurate method for quantifying 2ME using LC-MS/MS combined with derivatization with 1-(2,4-dinitro-5-fluorophenyl)-4,4-dimethylpiperazinium iodide (MPDNP-F).

View Article and Find Full Text PDF

White adipose tissue (WAT) comprises a plethora of cell types beyond adipocytes forming a regulatory network that ensures systemic energy homeostasis. Intertissue communication is facilitated by metabolites and signaling molecules that are spread by vasculature and nerves. Previous works indicated that WAT responds to environmental cues by adapting the abundance of these "communication routes", however, high intra-tissue heterogeneity questions the informative value of bulk or single cell analyses and underscores the necessity of whole-mount imaging.

View Article and Find Full Text PDF

Exploring the therapeutic potential of Abelmoschi Corolla in psoriasis: Mechanisms of action and inflammatory pathway disruption.

Phytomedicine

January 2025

Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China; Beijing Institute of Traditional Chinese Medicine, Beijing, China. Electronic address:

Background: Psoriasis is a prevalent chronic inflammatory skin condition for which existing treatments often fall short of fully addressing patient needs. Abelmoschi Corolla (AC), a traditional Chinese medicine, and its ethanol extract, huangkui capsule, are well established for the treatment of chronic kidney diseases. The therapeutic mechanisms of AC include anti-inflammatory effects and immune modulation, which align with psoriasis treatment strategies.

View Article and Find Full Text PDF

MetAssimulo 2.0: a web app for simulating realistic 1D & 2D Metabolomic 1H NMR spectra.

Bioinformatics

January 2025

Section of Bioinformatics, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, W12 0NN, United Kingdom.

Unlabelled: Metabolomics extensively utilizes Nuclear Magnetic Resonance (NMR) spectroscopy due to its excellent reproducibility and high throughput. Both one-dimensional (1D) and two-dimensional (2D) NMR spectra provide crucial information for metabolite annotation and quantification, yet present complex overlapping patterns which may require sophisticated machine learning algorithms to decipher. Unfortunately, the limited availability of labeled spectra can hamper application of machine learning, especially deep learning algorithms which require large amounts of labelled data.

View Article and Find Full Text PDF

Metabolite Profiling and Association Analysis of Leaf Tipburn in Heat-Tolerant Bunching Onion Varieties.

Plants (Basel)

January 2025

Laboratory of Vegetable Crop Science, Division of Life Science, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan.

The bunching onion is an important leafy vegetable, prized for its distinctive flavor and color. It is consumed year-round in Japan, where a stable supply is essential. However, in recent years, the challenges posed by climate change and global warming have resulted in adverse effects on bunching onions, including stunted growth, discoloration, and the development of leaf tipburn, threatening both crop quality and yield.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!