The constant regeneration of the blood system during hematopoiesis requires tightly controlled lineage decisions of hematopoietic progenitor cells (HPCs). Because of technical limitations, differentiation of individual HPCs could not previously be analyzed continuously. It was therefore disputed whether cell-extrinsic cytokines can instruct HPC lineage choice or only allow survival of cells that are already lineage-restricted. Here, we used bioimaging approaches that allow the continuous long-term observation of individual differentiating mouse HPCs. We demonstrate that the physiological cytokines, macrophage colony-stimulating factor and granulocyte colony-stimulating factor, can instruct hematopoietic lineage choice.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.1171461DOI Listing

Publication Analysis

Top Keywords

lineage choice
12
cytokines instruct
8
colony-stimulating factor
8
hematopoietic cytokines
4
lineage
4
instruct lineage
4
choice constant
4
constant regeneration
4
regeneration blood
4
blood system
4

Similar Publications

Multi-locus sequence typing (MLST) based on eight genes has become the method of choice for Borrelia typing and is extensively used for population studies. Whole-genome sequencing enables studies to scale up to genomic levels but necessitates extended schemes. We have developed a 639-loci core genome MLST (cgMLST) scheme for Borrelia burgdorferi sensu lato (s.

View Article and Find Full Text PDF

Resistance of BRAF-mutant melanomas to targeted therapy arises from the ability of cells to enter a persister state, evade treatment with relative dormancy, and repopulate the tumor when reactivated. A better understanding of the temporal dynamics and specific pathways leading into and out of the persister state is needed to identify strategies to prevent treatment failure. Using spatial transcriptomics in patient-derived xenograft models, we captured clonal lineage evolution during treatment.

View Article and Find Full Text PDF

Know your limits; miniCOI metabarcoding fails with key marine zooplankton taxa.

J Plankton Res

November 2024

Centro Oceanográfico de Málaga (IEO, CSIC), Explanada de San Andrés (Muelle 9), Puerto de Málaga, 29002 Málaga,Spain.

Eleven years after the publication of the first work applying deoxyribonucleic acid (DNA) metabarcoding to zooplankton communities, the commonly known "miniCOI" barcode is widely used, becoming the marker of choice. However, several primer combinations co-exist for this barcode and a critical evaluation of their performance is needed. This article reviews the misperformance of miniCOI metabarcoding with marine zooplankton communities, comparing them to microscopy and/or other universal markers.

View Article and Find Full Text PDF

We have generated single cell transcriptomic atlases of vomeronasal organs (VNO) from juvenile and adult mice. Combined with spatial molecular imaging, we uncover a distinct, previously unidentified class of cells that express the vomeronasal receptors (VRs) and a population of canonical olfactory sensory neurons in the VNO. High-resolution trajectory and cluster analyses reveal the lineage relationship, spatial distribution of cell types, and a putative cascade of molecular events that specify the V1r, V2r, and OR lineages from a common stem cell population.

View Article and Find Full Text PDF

Spatiotemporal dynamics of the developing zebrafish enteric nervous system at the whole-organ level.

Dev Cell

November 2024

California Institute of Technology, Division of Biology and Biological engineering, Pasadena, CA 91125, USA. Electronic address:

Neural crest cells give rise to the neurons of the enteric nervous system (ENS) that innervate the gastrointestinal (GI) tract to regulate gut motility. The immense size and distinct subregions of the gut present a challenge to understanding the spatial organization and sequential differentiation of different neuronal subtypes. Here, we profile enteric neurons (ENs) and progenitors at single-cell resolution during zebrafish embryonic and larval development to provide a near-complete picture of transcriptional changes that accompany the emergence of ENS neurons throughout the GI tract.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!