Historically, the majority of new drugs have been generated from natural products (secondary metabolites) and from compounds derived from natural products. During the past 15 years, pharmaceutical industry research into natural products has declined, in part because of an emphasis on high-throughput screening of synthetic libraries. Currently there is substantial decline in new drug approvals and impending loss of patent protection for important medicines. However, untapped biological resources, "smart screening" methods, robotic separation with structural analysis, metabolic engineering, and synthetic biology offer exciting technologies for new natural product drug discovery. Advances in rapid genetic sequencing, coupled with manipulation of biosynthetic pathways, may provide a vast resource for the future discovery of pharmaceutical agents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.1168243 | DOI Listing |
Expert Opin Ther Pat
December 2024
Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece.
Introduction: Neuroinflammation is correlated to neurodegenerative diseases like Alzheimer's disease (AD), Amyotrophic Lateral Sclerosis (ALS), Multiple Sclerosis (MS), Huntington Disease (HD) and Parkinson's disease (PD). A lot of recent research and patents are focused on the design and synthesis of arachidonic acid Lipoxygenase (ALOX) inhibitors for the treatment of neurodegenerative diseases.
Areas Covered: The survey covers natural products, synthesis, hybrids, and assessments of biological effects in biological studies as ALOX inhibitors.
Int J Mol Med
March 2025
Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China.
Bupleurum, a Traditional Chinese Medicine (TCM) herb, is widely used in China and other Asian countries to manage chronic liver inflammation and viral hepatitis. Saikosaponin D (SSD), a triterpenoid saponin extracted from Bupleurum, exhibits extensive pharmacological properties, including anti‑inflammatory, antioxidant, anti‑apoptotic, anti‑fibrotic and anti‑cancer effects, making it a therapeutic candidate for numerous diseases. Clarifying the targets and molecular mechanisms underlying TCM compounds is essential for scientifically validating TCM's therapeutic roles in disease prevention and treatment, as well as for identifying novel therapeutic targets and lead compounds.
View Article and Find Full Text PDFInt J Med Mushrooms
December 2024
National Center for Natural Products Research, Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA.
The psychedelic mushroom market has expanded rapidly due to changing regulations and increasing consumer demand. Product diversity now extends beyond traditional capsules and tablets to include gummies, powders, and confectionery items, complicating quality control efforts. To assess the quality and potential adulteration of Amanita musca-ria and Psilocybe cubensis-based products, a validated LC-QToF-MS method was developed.
View Article and Find Full Text PDFBrain Behav Immun Health
February 2025
Department of Microbiology and Systems Biology, The Netherlands Organisation for Applied Scientific Research (TNO), Leiden, the Netherlands.
Prebiotic dietary fiber (PDF) may reduce feelings of stress or improve mood in healthy individuals. Yet gut intervention studies that focus on mood in daily life are lacking and few studies include extensive biological sample analyses to gain mechanistic insights. As part of a larger randomized placebo-controlled crossover study including healthy individuals, we explored the effects of 12 weeks of PDF (acacia gum and carrot powder) on everyday mood, as measured with ecological momentary assessment (EMA).
View Article and Find Full Text PDFFront Cell Dev Biol
December 2024
Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia.
Introduction: T-cadherin, a non-canonical member of the cadherin superfamily, was initially identified for its involvement in homophilic recognition within the nervous and vascular systems. Apart from its adhesive function, T-cadherin acts as a receptor for two ligands: LDL, contributing to atherogenic processes, and HMW adiponectin, a hormone with well-known cardiovascular protective properties. However, the precise role of T-cadherin in adipose tissue remains elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!