Hyperthermia is an environmental stressor that produces marked increases in visceral sympathetic nerve discharge (SND) in young rats. The brainstem in rats contains the essential neural circuitry for mediating visceral sympathetic activation; however, specific brainstem sites involved remain virtually unknown. The rostral ventral lateral medulla (RVLM) is a key central nervous system region involved in the maintenance of basal SND and in mediating sympathetic nerve responses evoked from supraspinal sites. In the present study we tested the hypothesis that inhibition of RVLM synaptic activation at peak hyperthermia (internal body temperature, Tc, increased to 41.5 degrees C) would affect heating-induced visceral sympathetic activation. Experiments were completed in chloralose-urethane anesthetized, baroreceptor-intact and sinoaortic-denervated, 3-6 month-old Sprague-Dawley rats. Bilateral inhibition of RVLM synaptic activation produced by muscimol microinjections (400 and 800 pmol) at 41.5 degrees C resulted in immediate and significant reductions in peak heating-induced renal and splenic sympathoexcitation. Interruption of RVLM synaptic activation and axonal transmission by lidocaine microinjections (40 nmol) at 41.5 degrees C produced significant reductions in hyperthermia-induced sympathetic activation to similar levels produced by RVLM muscimol microinjections. The total amount of SND inhibited by RVLM muscimol and lidocaine microinjections was significantly more during hyperthermia (41.5 degrees C) than normothermia (38 degrees C). These findings demonstrate that maintenance of sympathetic activation at peak hyperthermia is dependent on the integrity of RVLM neural circuits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2739272PMC
http://dx.doi.org/10.1016/j.autneu.2009.06.004DOI Listing

Publication Analysis

Top Keywords

rvlm synaptic
16
synaptic activation
16
visceral sympathetic
16
sympathetic activation
16
415 degrees
16
inhibition rvlm
12
activation peak
12
peak hyperthermia
12
sympathetic nerve
12
activation
8

Similar Publications

Exposure to stressful stimuli promotes multi-system biological responses to restore homeostasis. Catecholaminergic neurons in the rostral ventrolateral medulla (RVLM) facilitate sympathetic activity and promote physiological adaptations, including glycaemic mobilization and corticosterone release. While it is unclear how brain regions involved in the cognitive appraisal of stress regulate RVLM neural activity, recent studies found that the rodent ventromedial prefrontal cortex (vmPFC) mediates stress appraisal and physiological stress responses.

View Article and Find Full Text PDF

Dynamic dysregulation of transcriptomic networks in brainstem autonomic nuclei during hypertension development in the female spontaneously hypertensive rat.

Physiol Genomics

March 2024

Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States.

Article Synopsis
  • Neurogenic hypertension results from an imbalance in autonomic function, leading to dysfunction in central cardiovascular control circuits.
  • Using female spontaneously hypertensive rats and normotensive Wistar-Kyoto rats, researchers examined transcriptomic changes in three key brainstem nuclei over time to understand hypertension development.
  • The study found persistent and transient gene dysregulation related to immune processes and neuronal excitability, particularly concentrated around the onset of hypertension, indicating critical windows for potential interventions in managing this major cardiovascular risk factor.
View Article and Find Full Text PDF

Exposure to stressful stimuli promotes multi-system biological responses to restore homeostasis. Catecholaminergic neurons in the rostral ventrolateral medulla (RVLM) facilitate sympathetic activity and promote physiological adaptations, including glycemic mobilization and corticosterone release. While it is unclear how brain regions involved in the cognitive appraisal of stress regulate RVLM neural activity, recent studies found that the rodent ventromedial prefrontal cortex (vmPFC) mediates stress appraisal and physiological stress responses.

View Article and Find Full Text PDF

Background: Dysfunctional neurons and microglia in the rostral ventrolateral medulla (RVLM) have been implicated in the pathogenesis of stress-induced hypertension (SIH). Functional perturbation of microglial synaptic engulfment can induce aberrant brain circuit activity. IFN-γ is a pleiotropic cytokine that plays a role in regulating neuronal activity.

View Article and Find Full Text PDF

Melatonin (5-methoxy-N-acetyl-tryptamine) is a circadian hormone synthesized and secreted by the pineal gland. In addition to regulating circadian rhythms of many physiological functions, melatonin is involved in regulating autonomic nervous function and blood pressure. Hypothalamus paraventricular nucleus (PVN), receiving melatonin projections from the superchiasmatic nucleus, is a critical brain region to regulate neuroendocrine and cardiovascular function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!