A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Vascular endothelial growth factor (VEGF) affects processing of amyloid precursor protein and beta-amyloidogenesis in brain slice cultures derived from transgenic Tg2576 mouse brain. | LitMetric

The up-regulation of the angiogenic vascular endothelial growth factor (VEGF) in brains of Alzheimer patients in close relationship to beta-amyloid (Abeta) plaques, suggests a link of VEGF action and processing of the amyloid precursor protein (APP). To reveal whether VEGF may affect APP processing, brain slices derived from 17-month-old transgenic Tg2576 mice were exposed with 1ng/ml VEGF for 6, 24, and 72h, followed by assessing cytosolic and membrane-bound APP expression, level of both soluble and fibrillar Abeta-peptides, as well as activities of alpha- and beta-secretases in brain slice tissue preparations. Treatment of brain slices with VEGF did not significantly affect the expression level of APP, regardless of the exposure time studied. In contrast, VEGF exposure of brain slices for 6h reduced the formation of soluble, SDS extractable Abeta(1-40) and Abeta(1-42) as compared to brain slice cultures incubated in the absence of any drug, while the fibrillar Abeta peptides did not change significantly. This effect was less pronounced 24h after VEGF exposure, but was no longer detectable when brain slices were exposed by VEGF for 72h, which indicates an adaptive response to chronic VEGF exposure. The VEGF-mediated reduction in Abeta formation was accompanied by a transient decrease in beta-secretase activity peaking 6h after VEGF exposure. To reveal whether the VEGF-induced changes in soluble Abeta-level may be due to actions of VEGF on Abeta fibrillogenesis, the fibrillar status of Abeta was examined using the thioflavin-T binding assay. Incubation of Abeta preparations obtained from Tg2576 mouse brain cortex, in the presence of VEGF slightly decreased the fibrillar content with increasing incubation time up to 72h. The data demonstrate that VEGF may affect APP processing, at least in vitro, suggesting a role of VEGF in the pathogenesis of Alzheimer's disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijdevneu.2009.06.011DOI Listing

Publication Analysis

Top Keywords

brain slices
16
vegf exposure
16
vegf
15
brain slice
12
vegf affect
12
brain
9
vascular endothelial
8
endothelial growth
8
growth factor
8
factor vegf
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!