Predicting Raman spectra using density functional theory.

Appl Spectrosc

The MITRE Corporation, 7515 Colshire Drive, McLean, Virginia 22102, USA.

Published: July 2009

Accurately computing molecular Raman spectra would enable rapid development of inexpensive and extensive Raman libraries. This is especially beneficial for chemicals that are regulated, toxic, or otherwise difficult to handle. Numerous quantum mechanical methods have been developed that enable computation of Raman spectra. Here, we study the B3LYP exchange correlation functional with various combinations of basis sets, polarization functions, and diffuse functions to determine which combination best computes the Raman spectra for explosive and nonexplosive molecules. In comparing spectra, three metrics were utilized: the root mean square error, the earth mover's distance, and the weighted cross-correlation average. The earth mover's distance and weighted cross-correlation metrics are shown to have significantly greater power at detecting spectral similarities and differences than the root mean square error. Across all methods and molecules examined, B3LYP/6-311++G(d,p) was found to provide the best match between measured and computed Raman spectra. Spectra generated at the B3LYP/6-311++G(d,p) level were found to be accurate enough to correctly identify each molecule out of a set of measured molecular spectra.

Download full-text PDF

Source
http://dx.doi.org/10.1366/000370209788700991DOI Listing

Publication Analysis

Top Keywords

raman spectra
20
spectra
8
root square
8
square error
8
earth mover's
8
mover's distance
8
distance weighted
8
weighted cross-correlation
8
raman
5
predicting raman
4

Similar Publications

Good fat vs bad fat in Milk: A molecular level Understanding of Indian cow milk using confocal Raman microscopy.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India. Electronic address:

Milk, a complex fluid renowned for abundance of vitamins and immune-boosting antibodies, holds a pivotal position in human nutrition. The research delves into the fundamental constituents of milk, focusing on cis-fatty acids (cis-FA), trans-fatty acids (trans-FA), and theα-helixstructure found in proteins. These constituents are instrumental in the determination of milk quality and its nutritional value.

View Article and Find Full Text PDF

Model P-chirogenic phosphonates derived from isopinocampheol, offering an excellent experimental system for studying chirality on the phosphorus chiral center, were studied using a set of chiroptical methods including ECD, VCD and ROA. Thanks to their rigidity, limiting the number of possible conformers, we successfully correlated the experimental UV-vis/ECD, IR/VCD and Raman/ROA results with DFT calculations. This allowed us to confidently assign the absolute configuration of our models, and our assignment is consistent with X-ray diffraction (XRD) data.

View Article and Find Full Text PDF

Molecular Clip Strategy of Modified Sulfur Cathodes for High-Performance Potassium Sulfur Batteries.

Adv Sci (Weinh)

January 2025

Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR, 999078, China.

Potassium-sulfur (K-S) batteries are severely limited by the sluggish reaction kinetics of the cyclooctasulfur (cyclo-S) electrode with low conductivity, which urgently requires a novel cathode to facilitate activity to improve sulfur utilization. In this study, using the wet chemistry method, the molecular clip of Li is created to replace cyclo-S molecular with the highly active chain-like S molecular. The molecular clip strategy effectively lowers the reaction barrier in potassium-sulfur systems, and the stretching of S─S bonds weakens the binding between sulfur atoms, facilitating the transformation of potassium polysulfides (KPSs).

View Article and Find Full Text PDF

Solar-driven CO photoreduction holds promise for sustainable fuel and chemical productions, but the complex proton-coupled multi-electron transfer processes and sluggish oxidation half-reaction kinetics substantially hinder its efficiency. Here, we devised a rational catalyst design to address these challenges by fabricating ferrocene carboxylic acid-functionalized CsSbBr nanocrystals (CSB-Fc NCs), which facilitate simultaneous benzyl alcohol oxidation and CO reduction reactions under visible-light irradiation. The synchronized proton-coupled electron transfer processes between the reduction and oxidation half-reactions on CSB-Fc NCs resulted in a 5-fold increase in the CO reduction rate (45.

View Article and Find Full Text PDF

Temperature Dependence of Intermolecular Dynamics and Liquid Properties of Deep Eutectic Solvent, Reline.

J Phys Chem B

January 2025

Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, J. D. Block, Sec.III, Salt Lake, Kolkata, West Bengal 700 098, India.

We investigated the temperature dependence of the intermolecular dynamics, including intermolecular vibrations and collective orientational relaxation, of one of the most typical deep eutectic solvents, reline, using femtosecond Raman-induced Kerr effect spectroscopy (fs-RIKES), subpicosecond optical Kerr effect spectroscopy (ps-OKES), and molecular dynamics (MD) simulations. According to fs-RIKES results, the temperature-dependent intermolecular vibrational band peak at ∼90 cm exhibited a redshift with increasing temperature. The density-of-state (DOS) spectrum of reline by MD simulations reproduced this fs-RIKES spectral feature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!