Objective: To study the role of myosin light chain kinase (MLCK) in intestinal epithelial barrier dysfunction after hypoxia.
Methods: The Caco-2 monolayers developed with Transwell inserts were exposed to hypoxia for 0 h (NC group), 2, 6, 8, 12 and 24 h (H group), and 6 h hypoxic specimens were treated with 100 mol/L ML-9 (T group). The transepithelial electrical resistance (TER) of monolayers was measured with an ohmmeter. The tight junction protein ZO-1 of monolayers was analyzed by immunofluorescence assay. The protein expressions of phosphorylated myosin light chain (p-MLC) and MLCK were detected by Western blotting.
Results: The TER of monolayers in H group at 6, 8, 12 and 24 h was 422 +/- 17, 427 +/- 27, 403 +/- 40 and 426 +/- 22 ohms respectively, which was significantly lower than that of NC group (451 +/- 27 ohms, P < 0.05). The TER of monolayers in T group was 558 +/- 110 ohms, which was significantly higher than that in H group at each time point ( P < 0.01). The ZO-1 of monolayers in H group at 6 h was irregular in arrangement, with interruptions and rugae, and sawtooth. These abnormalities were ameliorated in T group (regular in arrangement, with little or without ruga and sawtooth). The protein expressions of p-MLC and MLCK in H group at each time point were higher than those in NC group.
Conclusions: Intestinal epithelial barrier dysfunction after hypoxia can be mediated by MLCK.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!