Larvae of the bollworm Helicoverpa zea (Boddie) show some tolerance to Bacillus thuringiensis (Bt) Cry1Ac, and can survive on Cry1Ac-expressing Bt cotton, which should increase resistance development concerns. However, field-evolved resistance has not yet been observed. In a previous study, a population of H. zea was selected for stable resistance to Cry1Ac toxin. In the present study, we determined in laboratory bioassays if larvae of the Cry1Ac toxin-resistant H. zea population show higher survival rates on field-cultivated Bt cotton squares (= flower buds) collected prebloom-bloom than susceptible H. zea. Our results show that Cry1Ac toxin-resistant H. zea cannot complete larval development on Cry1Ac-expressing Bt cotton, despite being more than 150-fold resistant to Cry1Ac toxin and able to survive until pupation on Cry1Ac toxin concentrations greater than present in Bt cotton squares. Since mortality observed for Cry1Ac-resistant H. zea on Bt cotton was higher than expected, we investigated whether Cry1Ac interacts with gossypol and or other compounds offered with cotton powder in artificial diet. Diet incorporation bioassays were conducted with Cry1Ac toxin alone, and with gossypol and 4% cotton powder in the presence and absence of Cry1Ac. Cry1Ac toxin was significantly more lethal to susceptible H. zea than to resistant H. zea, but no difference in susceptibility to gossypol was observed between strains. However, combinations of Cry1Ac with gossypol or cotton powder were synergistic against resistant, but not against susceptible H. zea. Gossypol concentrations in individual larvae showed no significant differences between insect strains, or between larvae fed gossypol alone vs. those fed gossypol plus Cry1Ac. These results may help explain the inability of Cry1Ac-resistant H. zea to complete development on Bt cotton, and the absence of field-evolved resistance to Bt cotton by this pest.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10886-009-9665-xDOI Listing

Publication Analysis

Top Keywords

cry1ac toxin
20
cry1ac
13
cotton
12
susceptible zea
12
cotton powder
12
zea
11
helicoverpa zea
8
cry1ac-expressing cotton
8
field-evolved resistance
8
cry1ac toxin-resistant
8

Similar Publications

Characterization of an Ecdysone Oxidase from (L.) and Its Role in Bt Cry1Ac Resistance.

J Agric Food Chem

January 2025

State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.

Understanding the molecular mechanisms underlying insect resistance to (Bt) pesticidal proteins is crucial for sustainable pest management. Here, we found that downregulation of the ecdysone oxidase gene () in the normal feeding stages contributes to increased 20-hydroxyecdysone (20E) titer and mediates resistance to the Bt Cry1Ac toxin. The gene was cloned and its expression was significantly downregulated in the midgut of Bt-resistant and Cry1Ac-selected .

View Article and Find Full Text PDF

Multi-chromatic and multi-component lateral flow immunoassay for simultaneous detection of CP4 EPSPS, Bt-Cry1Ab, Bt-Cry1Ac, and PAT/bar proteins in genetically modified crops.

Mikrochim Acta

December 2024

Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.

A multi-chromatic and multi-component lateral flow immunoassay (MCMC-LFIA) was developed for simultaneous detection of CP4 EPSPS, Bt-Cry1Ab, Bt-Cry1Ac, and PAT/bar proteins in genetically modified (GM) crops. Captured antibodies specific to these exogenous proteins were separately immobilized on a nitrocellulose membrane as test zones. Multi-colored microspheres, used as visible multi-probes, were conjugated with corresponding antibodies and sprayed on the conjugate pad.

View Article and Find Full Text PDF

Transgenic poplars have been used to control quarantine pests worldwide, such as the fall webworm (, FW). However, the studies on the resistance mechanism of FW to Cry toxins are limited. This study obtained an FW strain with 45-fold resistance to Cry1Ab toxin by continuous screening in the laboratory.

View Article and Find Full Text PDF

Worldwide used bio-insecticides Cry1Ac toxin has no detrimental effects on Episyrphus balteatus but alter the symbiotic microbial communities.

Int J Biol Macromol

December 2024

State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China.

Hoverflies, capable of abilities providing dual ecosystem services including pest control and pollination, are exposed to insecticidal proteins from transgenic plants via pollen and prey aphids. However, the effects of such exposures on hoverflies have never been adequately assessed. Here, we investigated impacts of the most widely used biotoxin Cry1Ac on a representative hoverfly species Episyrphus balteatus through food chain transmission and active toxin exposure.

View Article and Find Full Text PDF

Cry2Ab2 is a Bacillus thuringiensis (Bt) protein that has been pyramided with Cry1A.105 in transgenic maize and Cry1Ac in cotton to control some major lepidopteran pests including the corn earworm/bollworm, Helicoverpa zea (Boddie). However, the widespread occurrence of resistance of this pest to the pyramided Cry1A/Cry2A crops in the southern region of the United State has become a threat to the sustainability of the technology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!