Nonlinear finite element analysis versus ex vivo strain gauge measurements on immediately loaded implants.

Int J Oral Maxillofac Implants

Mechanical Engineering Department, Faculty of Engineering, Middle East Technical University, Ankara, Turkey.

Published: September 2009

Purpose: To evaluate the level of agreement between nonlinear finite element stress analysis (NL-FEA) and ex vivo strain gauge analysis (EV-SGA) on immediately loaded implants.

Materials And Methods: Four 4.1-mm-diameter, 12-mm-long implants were placed bilaterally into the lateral and first premolar regions of completely edentulous maxillae of four human cadavers. Two-element 90-degree rosette strain gauges were bonded to the labial cortical bone around the implants, and 100 N maximal load was applied over two miniature load cells on bar-retained overdentures while simultaneous data acquisition from load cells and strain gauges was performed at a sample rate of 10 KHz. Individualized numeric models of the cadavers were constructed, and contact analysis with normal contact detection and separation behavior was performed between the implants and bone. Upon simulation of the loading regimen, axial and lateral strains were recorded. The NL-FEA data and EV-SGA data were compared.

Results: There was a high level of agreement regarding the quality of strains, as determined by both techniques, although the mean values obtained with EV-SGA were higher than those found with NL-FEA. However, the strains recorded by NL-FEA did not differ significantly (P<.05) from the strains recorded by EV-SGA.

Conclusion: Considering the complex biomechanical behavior of human hard and soft tissues, EV-SGA and NL-FEA did not suggest inconsistency in the detection of the quality of strains. Further, the methods provided comparable values for the quantification of strains on implants supporting maxillary overdentures.

Download full-text PDF

Source

Publication Analysis

Top Keywords

nonlinear finite
8
finite element
8
vivo strain
8
strain gauge
8
level agreement
8
strain gauges
8
load cells
8
strains recorded
8
recorded nl-fea
8
analysis
4

Similar Publications

Intelligent vehicle trajectory tracking with an adaptive robust nonsingular fast terminal sliding mode control in complex scenarios.

Sci Rep

December 2024

School of Vehicle and Energy, Yanshan University, 438 West Hebei Avenue, Qinhuangdao, 066004, People's Republic of China.

This study presents a strategy for an intelligent vehicle trajectory tracking system that employs an adaptive robust non-singular fast terminal sliding mode control (ARNFTSMC) approach to address the challenges of uncertain nonlinear dynamics. Initially, a path tracking error system based on mapping error is established, along with a speed tracking error system. Subsequently, a novel ARNFTSMC strategy is introduced to tackle the uncertainties and external perturbations encountered during actual vehicle operation.

View Article and Find Full Text PDF

To achieve high-performance trajectory tracking for a manipulator, this study proposes a novel sliding mode control strategy incorporating a nonlinear disturbance observer. The observer is designed to estimate unknown models in real-time, enabling feedforward compensation for various uncertainties such as modeling errors, joint friction, and external torque disturbances. The control law is formulated by integrating the Backstepping method, Lyapunov theory, and global fast terminal sliding mode theory, ensuring global convergence to zero within finite time and enhancing system robustness.

View Article and Find Full Text PDF

Fuzzy modelling and cost optimization of fault-tolerant system with service interruption.

ISA Trans

December 2024

Department of Mathematics, Deshbandhu College, University of Delhi, New Delhi 110019, India. Electronic address:

Redundancy and maintainability-supported fault-tolerant machining systems are used in many industries to achieve pre-specified reliability and system capability. In this investigation, a non-Markov model for the machining system has been developed by involving the concepts of server vacation, server breakdown, and reboot process. The server may fail and undergo primary repair which may be unsuccessful in recovering the server.

View Article and Find Full Text PDF

Companion-based multi-level finite element method for computing multiple solutions of nonlinear differential equations.

Comput Math Appl

August 2024

Department of Mathematics, Texas State, 78666 TX, San Marcos, USA.

The utilization of nonlinear differential equations has resulted in remarkable progress across various scientific domains, including physics, biology, ecology, and quantum mechanics. Nonetheless, obtaining multiple solutions for nonlinear differential equations can pose considerable challenges, particularly when it is difficult to find suitable initial guesses. To address this issue, we propose a pioneering approach known as the Companion-Based Multilevel Finite Element Method (CBMFEM).

View Article and Find Full Text PDF

Objective: Percutaneous Endoscopic Transforaminal Discectomy (PETD) is recognized as the leading surgical intervention for lumbar disc herniation (LDH). Moreover, Body Mass Index (BMI) has been established as an independent risk factor for disc reherniation post-PETD. Furthermore, there is a lack of studies investigating the biomechanical changes in the disc post-PETD in relation to diverse BMI levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!