Nitrogen enriched dissolved organic matter (DOM) isolates and their affinity to form emerging disinfection by-products.

Water Sci Technol

Department of Civil and Environmental Engineering, Arizona State University, Engineering Center (G-Wing), Room ECG-252, Tempe, AZ 85287, USA.

Published: September 2009

Increased contributions from wastewater discharges and algal activity in drinking water supplies can lead to elevated levels of dissolved organic nitrogen (DON), which can increase the likelihood for the formation of emerging nitrogenous disinfection by-products (N-DBPs) of health concern. Dissolved organic matter (DOM) isolated from five waters, using a newly developed DOM isolation method specific to DON fractionation, produced thirty-four isolates of suitable mass. Each isolate was treated with free chlorine or chloramines under formation potential conditions. The DBP yields were determined for three halogenated DBPs (trichloromethane, dichloroacetonitrile, and trichloronitromethane) and one non-halogenated DBP (N-nitrosodimethylamine [NDMA]). Halogenated DBP yields were greater during the application of free chlorine, however chloramination produced significant levels of halogenated N-DBPs for some isolates. NDMA was only observed to form from selected nitrogen-enriched isolates (DOC/DON ratio < 20 mg/mg), especially those isolated from treated wastewater. Other results indicated that nitrogen-enriched DOM resulted in increased yields of the other N-DBPs studied.

Download full-text PDF

Source
http://dx.doi.org/10.2166/wst.2009.333DOI Listing

Publication Analysis

Top Keywords

dissolved organic
12
organic matter
8
matter dom
8
disinfection by-products
8
free chlorine
8
dbp yields
8
nitrogen enriched
4
enriched dissolved
4
dom
4
isolates
4

Similar Publications

Upcycling industrial peach waste to produce dissolving pulp.

Environ Sci Pollut Res Int

January 2025

Laboratory of Design and Development of Innovative Knitted Textiles and Garments, Department of Industrial Design and Production Engineering, University of West Attica, 12244, Egaleo, Attica, Greece.

This study investigates the production of high-purity cellulose pulp from peach (Prunus persica) fruit wastes generated during the processing of a Greek compote and juice production industry. A three-step chemical process is used, including alkaline treatment with NaOH, organic acid (acetic and formic) treatment, and hydrogen peroxide treatment, with the goal of cellulose extraction and purification. A fractional factorial design optimized reagent levels, revealing the strong influence of NaOH concentration on α-cellulose content and degree of polymerization.

View Article and Find Full Text PDF

Removal of dissolved organic matter in road runoff with sludge-based filters from the drinking water treatment plant.

Water Sci Technol

January 2025

China Construction Fifth Engineering Division Co., Ltd, Changsha, Hunan 410004, China.

Road runoff underwent treatment using a filter filled with sludge from drinking water treatment plants to assess its capacity for removing dissolved organic matter (DOM). This evaluation utilized resin fractionation, gel permeation chromatography, three-dimensional excitation-emission matrix fluorescence spectroscopy, and UV-Visible spectroscopy. The filter demonstrated enhanced efficiency in removing dissolved organic carbon, achieving removal rates between 70 and 80%.

View Article and Find Full Text PDF

Iron(II/III) Alters the Relative Roles of the Microbial Byproduct and Humic Acid during Chromium(VI) Reduction and Fixation by Soil-Dissolved Organic Matter.

Environ Sci Technol

January 2025

Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.

Though reduction of hexavalent chromium (Cr(VI)) to Cr(III) by dissolved organic matter (DOM) is critical for the remediation of polluted soils, the effects of DOM chemodiversity and underlying mechanisms are not fully elucidated yet. Here, Cr(VI) reduction and immobilization mediated by microbial byproduct (MBP)- and humic acid (HA)-like components in (hot) water-soluble organic matter (WSOM), (H)WSOM, from four soil samples in tropical and subtropical regions of China were investigated. It demonstrates that Cr(VI) reduction capacity decreases in the order WSOM > HWSOM and MBP-enriched DOM > HA-enriched DOM due to the higher contents of low molecular weight saturated compounds and CHO molecules in the former.

View Article and Find Full Text PDF

Oxygen consumption by oceanic microbes can predict respiration (CO production) but requires an assumed respiratory quotient (RQ; ΔO/ΔCO). Measured apparent RQs (ARQs) can be impacted by various processes, including nitrification and changes in dissolved organic matter (DOM) composition, leading to discrepancies between ARQ and actual RQ. In DOM remineralization experiments conducted in the eastern North Atlantic Ocean, ARQs averaged 1.

View Article and Find Full Text PDF

Performance of four thermophilic bacteria for primary sludge hydrolysis: Sludge disintegration and hydrolase activities.

Bioresour Technol

January 2025

College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China. Electronic address:

Thermophilic bacteria (TB) pretreatment is an efficient and environmentally friendly way for accelerating sludge hydrolysis. In this study, a complete comparison of the hydrolysis performance of Bacillus sp. AT07-1 (X1), Parageobacillus toebii X2 (X2), Geobacillus kaustophilus X3 (X3) and Parageobacillus toebii R-35642 (X4) was performed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!