A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Endogenous angiotensin II facilitates GABAergic neurotransmission afferent to the Na+-responsive neurons of the rat median preoptic nucleus. | LitMetric

Endogenous angiotensin II facilitates GABAergic neurotransmission afferent to the Na+-responsive neurons of the rat median preoptic nucleus.

Am J Physiol Regul Integr Comp Physiol

Centre de Recherche du Affilié au Centre Hospitalier Universitaire du Québec, Neurosciences and Faculté de Médecine, Université Laval, Québec, Canada.

Published: September 2009

The median preoptic nucleus (MnPO) is densely innervated by efferent projections from the subfornical organ (SFO) and, therefore, is an important relay for the peripheral chemosensory and humoral information (osmolality and serum levels ANG II). In this context, controlling the excitability of MnPO neuronal populations is a major determinant of body fluid homeostasis and cardiovascular regulation. Using a brain slice preparation and patch-clamp recordings, our study sought to determine whether endogenous ANG II modulates the strength of the SFO-derived GABAergic inputs to the MnPO. Our results showed that the amplitude of the inhibitory postsynaptic currents (IPSCs) were progressively reduced by 44 +/- 2.3% by (Sar(1), Ile(8))-ANG II, a competitive ANG type 1 receptor (AT(1)R) antagonist. Similarly, losartan, a nonpeptidergic AT(1)R antagonist decreased the IPSC amplitude by 40.4 +/- 5.6%. The facilitating effect of endogenous ANG II on the GABAergic input to the MnPO was not attributed to a change in GABA release probability and was mimicked by exogenous ANG II, which potentiated the amplitude of the muscimol-activated GABA(A)/Cl(-) current by 53.1 +/- 11.4%. These results demonstrate a postsynaptic locus of action of ANG II. Further analysis reveals that ANG II did not affect the reversal potential of the synaptic inhibitory response, thus privileging a cross talk between postsynaptic AT(1) and GABA(A) receptors. Interestingly, facilitation of GABAergic neurotransmission by endogenous ANG II was specific to neurons responding to changes in the ambient Na(+) level. This finding, combined with the ANG II-mediated depolarization of non-Na(+)-responsive neurons reveals the dual actions of ANG II to modulate the excitability of MnPO neurons.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpregu.00226.2009DOI Listing

Publication Analysis

Top Keywords

endogenous ang
12
ang
10
gabaergic neurotransmission
8
median preoptic
8
preoptic nucleus
8
excitability mnpo
8
at1r antagonist
8
mnpo
5
endogenous
4
endogenous angiotensin
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!