Expression of MdACS1, coding for 1-aminocyclopropane-1-carboxylate synthase (ACS), parallels the level of ethylene production in ripening apple (Malus domestica) fruit. Here we show that expression of another ripening-specific ACS gene (MdACS3) precedes the initiation of MdACS1 expression by approximately 3 weeks; MdACS3 expression then gradually decreases as MdACS1 expression increases. Because MdACS3 expression continues in ripening fruit treated with 1-methylcyclopropene, its transcription appears to be regulated by a negative feedback mechanism. Three genes in the MdACS3 family (a, b, and c) were isolated from a genomic library, but two of them (MdACS3b and MdACS3c) possess a 333-bp transposon-like insertion in their 5' flanking region that may prevent transcription of these genes during ripening. A single nucleotide polymorphism in the coding region of MdACS3a results in an amino acid substitution (glycine-289 --> valine) in the active site that inactivates the enzyme. Furthermore, another null allele of MdACS3a, Mdacs3a, showing no ability to be transcribed, was found by DNA sequencing. Apple cultivars homozygous or heterozygous for both null allelotypes showed no or very low expression of ripening-related genes and maintained fruit firmness. These results suggest that MdACS3a plays a crucial role in regulation of fruit ripening in apple, and is a possible determinant of ethylene production and shelf life in apple fruit.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2735996PMC
http://dx.doi.org/10.1104/pp.109.135822DOI Listing

Publication Analysis

Top Keywords

1-aminocyclopropane-1-carboxylate synthase
8
shelf life
8
life apple
8
apple fruit
8
fruit expression
8
ethylene production
8
ripening apple
8
mdacs1 expression
8
mdacs3 expression
8
expression
7

Similar Publications

Pumpkin (Cucurbita maxima D.) is typically monoecious with individual male and female flowers, and its yield is associated with the degree of femaleness, i.e.

View Article and Find Full Text PDF

Constitutive expression of cucumber CsACS2 in Arabidopsis Thaliana disrupts anther dehiscence through ethylene signaling and DNA methylation pathways.

Plant Cell Rep

November 2024

Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.

Constitutive expression of cucumber CsACS2 in Arabidopsis disrupts anther dehiscence and male fertility via ethylene signaling and DNA methylation, revealing new avenues for enhancing crop reproductive traits. The cucumber gene CsACS2, encoding ACC (1-aminocyclopropane-1-carboxylic acid) synthase, plays a pivotal role in ethylene biosynthesis and sex determination. This study investigates the effects of constitutive CsACS2 expression in Arabidopsis thaliana on anther development and male fertility.

View Article and Find Full Text PDF

The RING-type E3 ligase RIE1 sustains leaf longevity by specifically targeting AtACS7 to fine-tune ethylene production in .

Proc Natl Acad Sci U S A

November 2024

Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China.

Ethylene is widely recognized as a positive regulator of leaf senescence. However, how plants coordinate the biosynthesis of ethylene to meet the requirements of senescence progression has not been determined. The rate-limiting enzyme in the ethylene biosynthesis pathway is ACC synthase.

View Article and Find Full Text PDF

The Potential Diagnostic Utility of SMAD4 and ACCS in the Context of Inflammation in Type 2 Diabetes Mellitus Patients.

Biomedicines

September 2024

Department and Clinic of Internal Medicine, Angiology and Physical Medicine, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Batorego 15 St, 41-902 Bytom, Poland.

The search for new parameters for the prediction of type 2 diabetes mellitus (T2DM) or its harmful consequences remains an important field of study. Depending on the low-grade inflammatory nature of diabetes, we investigated three proteins in T2DM patients: 1-aminocyclopropane-1-carboxylate synthase (ACCS), granulocyte-colony-stimulating factor (G-CSF), and Sma Mothers Against Decapentaplegic homolog-4 (SMAD4). In brief, sixty T2DM and thirty healthy controls had their serum levels of ACCS, G-CSF, SMAD4, and insulin tested using the ELISA method.

View Article and Find Full Text PDF

Concordant Gene Expression and Alternative Splicing Regulation under Abiotic Stresses in Arabidopsis.

Genes (Basel)

May 2024

Department of Biology, College of Science and Arts at Khulis, University of Jeddah, Jeddah 21921, Saudi Arabia.

The current investigation endeavors to identify differentially expressed alternatively spliced (DAS) genes that exhibit concordant expression with splicing factors (SFs) under diverse multifactorial abiotic stress combinations in Arabidopsis seedlings. SFs serve as the post-transcriptional mechanism governing the spatiotemporal dynamics of gene expression. The different stresses encompass variations in salt concentration, heat, intensive light, and their combinations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!