Population dynamics at digester overload conditions.

Bioresour Technol

Unit of Environmental Engineering, Institute of Infrastructure, University Innsbruck, Technikerstrasse 13, 6020 Innsbruck, Austria.

Published: December 2009

Two different case studies concerning potential overload situations of anaerobic digesters were investigated and mathematically modelled by means of the Anaerobic Digestion Model No. 1 (ADM1). The first scenario included a digester failure at a municipal WWTP which occurred during revision works of the upstream digester within a two-step digestion system when the sludge was directly by-passed to the 2nd-step reactor. Secondly, the non-occurrence of a highly expected upset situation in a lab-scale digester fed with cattle manure was investigated. ADM1 was utilized to derive indicators which were used to investigate the relationship between digester stability and biomass population dynamics. Conventional design parameters such as the organic loading rate appeared unsuitable for process description under dynamic conditions. Indicators reflecting the biokinetic state (e.g. F(net)/M(net) or the VFA/alkalinity ratio) are more adequate for the assessment of the stability of reactors in transient situations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2009.06.033DOI Listing

Publication Analysis

Top Keywords

population dynamics
8
digester
5
dynamics digester
4
digester overload
4
overload conditions
4
conditions case
4
case studies
4
studies concerning
4
concerning potential
4
potential overload
4

Similar Publications

The nucleus tractus solitarius (NTS) contains neurons that relay sensory swallowing commands information from the oropharyngeal cavity and swallowing premotor neurons of the dorsal swallowing group (DSG). However, the spatio-temporal dynamics of the interplay between the sensory relay and the DSG is not well understood. Here, we employed fluorescence imaging after microinjection of the calcium indicator into the NTS in an arterially perfused brainstem preparation of rat (n = 8) to investigate neuronal population activity in the NTS in response to superior laryngeal nerve (SLN) stimulation.

View Article and Find Full Text PDF

Purifying selection is a critical factor in shaping genetic diversity. Current theoretical models mostly address scenarios of either very weak or strong selection, leaving a significant gap in our knowledge. The effects of purifying selection on patterns of genomic diversity remain poorly understood when selection against deleterious mutations is weak to moderate, particularly when recombination is limited or absent.

View Article and Find Full Text PDF

Heterogeneity in Fluorescence-Stained Sperm Membrane Patterns and Their Dynamic Changes Towards Fertilization in Mice.

Front Biosci (Landmark Ed)

January 2025

Graduate School of Life and Environmental Sciences, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, 400-8510 Kofu, Japan.

Background: Sperm represent a heterogeneous population crucial for male reproductive success. Additionally, sperm undergo dynamic changes during maturation and capacitation. Despite these well-established processes, the complex nature of sperm heterogeneity and membrane dynamics remains elusive.

View Article and Find Full Text PDF

This study investigates the relationship between SARS-CoV-2 RT-PCR cycle threshold (Ct) values and key COVID-19 transmission and outcome metrics across five years of the pandemic in Jalisco, Mexico. Utilizing a comprehensive time-series analysis, we evaluated weekly median Ct values as proxies for viral load and their temporal associations with positivity rates, reproduction numbers (Rt), hospitalizations, and mortality. Cross-correlation and lagged regression analyses revealed significant lead-lag relationships, with declining Ct values consistently preceding surges in positivity rates and hospitalizations, particularly during the early phases of the pandemic.

View Article and Find Full Text PDF

Porcine reproductive and respiratory syndrome (PRRS) is an endemic disease affecting the swine industry. The disease is caused by the PRRS virus (PRRSV). Despite extensive biosecurity and control measures, the persistence and seasonality of the virus have raised questions about the virus's environmental dynamics during the fall season when the yearly epidemic onset begins and when crop harvesting and manure incorporation into the field occur.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!