We investigated the vertical profiles of (239+240)Pu, (137)Cs, and excess (210)Pb ((210)Pb(ex)) in sediment core samples obtained from two freshwater lakes and two brackish lakes situated near the first commercial spent nuclear fuel reprocessing plant in Rokkasho, Japan, before the final test of the plant using actual spent nuclear fuel. The inventory of (239+240)Pu in those lakes was larger than that in soil in Rokkasho, which indicated the inflow of (239+240)Pu from the catchment area in addition to direct deposition on the lake surfaces. The (137)Cs inventory in sediments of the brackish lakes was lower than that in the soil, which showed that part of the (137)Cs was removed from the sediments by the brackish water or that it was not deposited into the sediments, because of the high solubility of Cs in brackish water. The (137)Cs inventory in sediments of the freshwater lakes was higher than that of the brackish lakes, and comparable with that in soil except for one core sample out of four. The (239+240)Pu/(137)Cs ratio in freshwater lake sediments was higher than that in soil, and that indicated that part of the (137)Cs was lost from the sediments. The low inventory of (137)Cs may be attributable to competition for absorption sites in sediments with ammonium ions formed in the reducing environment which occurs from summer to fall in the sediments. Those data will be used as background data on the artificial radionuclides in the lakes to assess the effect of released radionuclides on their concentrations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvrad.2009.06.008 | DOI Listing |
FEMS Microbiol Lett
January 2025
K.A. Timiryazev Institute of Plant Physiology of the Russian Academy of Sciences, Botanicheskaya St. 35, Moscow 127276, Russian Federation.
A new filamentous phototrophic bacterium Khr17 was isolated as an enrichment culture from the brackish polar lake Bol'shie Khruslomeny. The organism was a halotolerant, strictly anaerobic phototroph possessing photosystem II. Sulfide was required for phototrophic growth.
View Article and Find Full Text PDFEnviron Monit Assess
December 2024
Department of Forest, Environment, and Climate Change, Chilika Development Authority, Barkul, Odisha, India.
Chlorophyll-a (Chla) is recognized as a key indicator of water quality and ecological health in aquatic ecosystems, offering valuable insights into ecosystem dynamics and changes over time. This study aimed to to develop and validate a robust ML model for estimating Chla using Landsat data, produce a time series of Chl a maps, and analyze the spatiotemporal variability of Chla in Chilika Lagoon, Asia's largest brackish water lagoon. Nine ML regression models, including Extreme Gradient Boost, Support Vector Regression, Random Forest, and Bagging Regression, were evaluated using Landsat imagery and field data.
View Article and Find Full Text PDFMicrobiome
December 2024
Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
Background: Tibetan Plateau is credited as the "Third Pole" after the Arctic and the Antarctic, and lakes there represent a pristine habitat ideal for studying microbial processes under climate change.
Results: Here, we collected 169 samples from 54 lakes including those from the central Tibetan region that was underrepresented previously, grouped them to freshwater, brackish, and saline lakes, and generated a genome atlas of the Tibetan Plateau Lake Microbiome. This genomic atlas comprises 8271 metagenome-assembled genomes featured by having significant phylogenetic and functional novelty.
Taxonomic clarification of Tonnacypris stewarti comb. nov. (= Herpetocypris stewarti), a non-marine ostracod first described by Daday in 1908, was required due to the existence of various synonyms without detailed morphological descriptions.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Institute of Microbiology, Eidgenössische Technische Hochschule Zurich, Zurich 8093, Switzerland.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!