Chemical changes in aging Drosophila melanogaster.

Age (Dordr)

School of Pharmacy and Biomolecular Sciences, University of Brighton, Moulsecoomb, Brighton, UK.

Published: December 2009

AI Article Synopsis

Article Abstract

The “Green Theory” of aging proposes that organismal lifespan is limited by the failure to repair molecular damage generated by a broad range of metabolic processes. Two specific predictions arise from this: (1) that these processes will produce a wide variety of stable but dysfunctional compounds that increase in concentration with age, and (2) that organisms maintained under conditions that extend lifespan will display a reduced rate of accumulation of such “molecular rubbish”. To test these predictions, novel analytical techniques were developed to investigate the accumulation of damaged compounds in Drosophila melanogaster. Simple preparative techniques were developed to produce digests of whole D. melanogaster for use in three-dimensional (3D) fluorimetry and 1H NMR spectrometry. Cohorts of Drosophila maintained under normal conditions showed an age-related increase in signals consistent with damage whereas those maintained under conditions of low temperature and dietary restriction did not. 1H NMR revealed distinct age-associated spectral changes that will facilitate the identification of novel compounds that both increase and decrease during aging in this species. These findings are consistent with the predictions of the “Green Theory”.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2813051PMC
http://dx.doi.org/10.1007/s11357-009-9105-4DOI Listing

Publication Analysis

Top Keywords

drosophila melanogaster
8
“green theory”
8
compounds increase
8
maintained conditions
8
techniques developed
8
chemical changes
4
changes aging
4
aging drosophila
4
melanogaster “green
4
theory” aging
4

Similar Publications

Recently, 3-D porous architecture of the composites play a key role in cell proliferation, bone regeneration, and anticancer activities. The osteoinductive and osteoconductive properties of β-TCP allow for the complete repair of numerous bone defects. Herein, β-TCP was synthesized by wet chemical precipitation route, and their 3-D porous composites with HBO and Cu nanoparticles were prepared by the solid-state reaction method with improved mechanical and biological performances.

View Article and Find Full Text PDF

Animal models of kabuki syndrome and their applicability to novel drug discovery.

Expert Opin Drug Discov

January 2025

Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.

Introduction: Kabuki Syndrome (KS) is a rare genetic disorder characterized by distinctive facial features, intellectual disability, and multiple congenital anomalies. It is caused by pathogenic variants in the and genes. Despite its significant disease burden, there are currently no approved therapies for KS, highlighting the need for advanced research and therapeutic development.

View Article and Find Full Text PDF

Context: The decline in ovarian reserve is a major concern in female reproductive health, often associated with oxidative stress and mitochondrial dysfunction. Although ginsenoside Rg1 is known to modulate mitophagy, its effectiveness in mitigating ovarian reserve decline remains unclear.

Objective: To investigate the role of ginsenoside Rg1 in promoting mitophagy to preserve ovarian reserve.

View Article and Find Full Text PDF

Chemosensation and mechanosensation are vital to insects' survival and behavior, shaping critical physiological processes such as feeding, metabolism, mating, and reproduction. During feeding, insects rely on diverse chemosensory and mechanosensory receptors to distinguish between nutritious and harmful substances, enabling them to select suitable food sources while avoiding toxins. These receptors are distributed across various body parts, allowing insects to detect environmental cues about food quality and adjust their behaviors accordingly.

View Article and Find Full Text PDF

severely damages the production of berry and stone fruits in large parts of the world. Unlike , which reproduces on overripe and fermenting fruits on the ground, prefers to lay its eggs in ripening fruits still on the plants. Flies locate fruit hosts by their odorant volatiles, which are detected and encoded by a highly specialised olfactory system before being translated into behaviour.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!