Physiological and biochemical responses of green microalgae from different habitats to osmotic and matric stress.

Protoplasma

Department of Biological Sciences, Applied Ecology, University of Rostock, Albert-Einstein-Strasse 3, 18051 Rostock, Germany.

Published: July 2010

Growth of five aeroterrestrial green algal strains (Trebouxiophyceae) in response to changing water availabilities-caused by osmotic (ionic) and matric (desiccation) stresses-was investigated in comparison with a freshwater and a marine strain. All investigated algae displayed good growth under brackish conditions while four out of the five aeroterrestrial strains even grew well under full marine conditions (28-40 psu). The comparison between growth responses in liquid medium, on solid agarose, and on glass fiber filters at 100% air humidity indicated a broad growth tolerance of aeroterrestrial algae towards diminished water availability. While two aeroterrestrial strains even grew better on solid medium which mimics natural biofilm conditions, the aquatic strains showed significant growth inhibition under matric stress. Except Stichococcus sp., which contained the C6-polyol sorbitol, all other aeroterrestrial green algae investigated synthesized and accumulated the C5-polyol ribitol in response to osmotic stress. Using (13)C NMR spectroscopy and HPLC, it could be verified that ribitol functions as an osmotically regulated organic solute. This is the first proof of ribitol in free-living aeroterrestrial green algae. The biochemical capability to synthesize polyols under environmental stress conditions seems to support algal life outside aquatic habitats.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00709-009-0060-9DOI Listing

Publication Analysis

Top Keywords

aeroterrestrial green
12
matric stress
8
aeroterrestrial strains
8
strains grew
8
green algae
8
aeroterrestrial
6
growth
5
physiological biochemical
4
biochemical responses
4
green
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!