The human transglutaminase (TG) family consists of a structural protein, protein 4.2, that lacks catalytic activity, and eight zymogens/enzymes, designated factor XIII-A (FXIII-A) and TG1-7, that catalyze three types of posttranslational modification reactions: transamidation, esterification, and hydrolysis. These reactions are essential for biological processes such as blood coagulation, skin barrier formation, and extracellular matrix assembly but can also contribute to the pathophysiology of various inflammatory, autoimmune, and degenerative conditions. Some members of the TG family, for example, TG2, can participate in biological processes through actions unrelated to transamidase catalytic activity. We present here a comprehensive review of recent insights into the physiology and pathophysiology of TG family members that have come from studies of genetically engineered mouse models and/or inherited disorders. The review focuses on FXIII-A, TG1, TG2, TG5, and protein 4.2, as mice deficient in TG3, TG4, TG6, or TG7 have not yet been reported, nor have mutations in these proteins been linked to human disease.

Download full-text PDF

Source
http://dx.doi.org/10.1152/physrev.00044.2008DOI Listing

Publication Analysis

Top Keywords

genetically engineered
8
engineered mouse
8
mouse models
8
inherited disorders
8
catalytic activity
8
biological processes
8
transglutaminases disease
4
disease lessons
4
lessons genetically
4
models inherited
4

Similar Publications

dna2bit: high performance genomic distance estimation software for microbial genome analysis.

Front Microbiol

December 2024

Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China.

dna2bit is an ultra-fast software specifically engineered for microbial genome analysis, particularly adept at calculating genome distances within metagenome and single amplified genome datasets. Distinguished from existing software such as Mash and Dashing, dna2bit employs feature hashing technique and Hamming distance to achieve enhanced speed and memory utilization, without sacrifice in the accuracy of average nucleotide identity calculations. dna2bit has promising applications in various domains such as average nucleotide identity approximation, metagenomic sequence clustering, and homology querying.

View Article and Find Full Text PDF

Background: Evidence indicates a negative link between glucosamine and age-related cognitive decline and sarcopenia. However, the causal relationship remains uncertain. This study aims to verify whether glucosamine is causally associated with cognitive function and sarcopenia.

View Article and Find Full Text PDF

Clonal hematopoiesis of indeterminate potential and the risk of pulmonary embolism: an observational study.

EClinicalMedicine

August 2024

Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Guangzhou, China.

Background: Pulmonary embolism causes a substantial burden of morbidity and mortality. Although there are several well-established risk factors for pulmonary embolism, a substantial proportion of cases cannot be attributed to provoked or known risk factors. Accumulating evidence has suggested an association of clonal hematopoiesis of indeterminate potential (CHIP) with the risk of arterial thromboembolism.

View Article and Find Full Text PDF

Diffuse gastric adenocarcinoma (DGAC) is an aggressive malignancy with limited therapeutic options, poor prognosis, and poorly understood biology. CRACD, an actin polymerization regulator, is often inactivated in gastric cancer, including DGAC. We found that genetic engineering of murine gastric organoids with ablation combined with mutation and loss induced aberrant cell plasticity, hyperproliferation, and hypermucinosis, the features that recapitulate DGAC transcriptional signatures.

View Article and Find Full Text PDF

Unlabelled: In most cancers, including endometrial cancer, tumor suppressor genes harboring inactivating mutations have been systematically cataloged. However, locus-specific epigenetic alterations contributing to cancer initiation and progression remain only partly described, creating knowledge gaps about functionally significant tumor suppressors and underlying mechanisms associated with their inactivation. Here, we show that PAX2 is an endometrial tumor suppressor recurrently inactivated by a distinct epigenetic reprogramming event not associated with promoter hypermethylation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!