Parathyroid hormone-related protein (PTHrP) is expressed by human prostatic tissues and cancer cell lines. PTHrP enhances tumor cell growth and metastasis in vivo and up-regulates proinvasive integrin alpha6beta4 expression in vitro. Hallmarks of malignant tumor cells include resistance to apoptosis and anchorage-independent cell growth. In this study, we used the human prostate cancer cell lines C4-2 and PC-3 as model systems to study the effects of PTHrP on these processes. We report that PTHrP protects these cells from doxorubicin-induced apoptosis and promotes anchorage-independent cell growth via an intracrine pathway. Conversely, autocrine/paracrine PTHrP action increases apoptosis in C4-2 cells and has no effect on apoptosis in PC-3 cells. The intracrine effects of PTHrP on apoptosis are mediated via activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. PTHrP also affects the phosphorylation state of Akt substrates implicated in apoptosis suppression, including glycogen synthase kinase-3 and Bad. The prosurvival effects of PTHrP are accompanied by increases in the ratio of antiapoptotic to proapoptotic members of the Bcl-2 family and in levels of c-myc. PTHrP also increases nuclear factor-kappaB activity via a PI3K-dependent pathway. Integrin alpha6beta4 is known to activate PI3K. Here, we also show that knockdown of integrin alpha6beta4 negates the PTHrP-mediated activation of the PI3K/Akt pathway. Taken together, these observations provide evidence of a link between PTHrP and the PI3K/Akt signaling pathway through integrin alpha6beta4, resulting in the activation of survival pathways. Targeting PTHrP production in prostate cancer may thus prove therapeutically beneficial.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2755566PMC
http://dx.doi.org/10.1158/1541-7786.MCR-08-0568DOI Listing

Publication Analysis

Top Keywords

integrin alpha6beta4
16
cell growth
12
effects pthrp
12
pthrp
11
parathyroid hormone-related
8
hormone-related protein
8
survival pathways
8
activation phosphatidylinositol
8
cancer cell
8
cell lines
8

Similar Publications

Junctional epidermolysis bullosa caused by loss-of-function variants in genes encoding the skin basement membrane proteins laminin 332, type XVII collagen, or integrin α6β4 affects patients from birth with severe blistering, eventually leading to scarring and early lethality. In this study, we have optimized a previously published junctional epidermolysis bullosa-knockout mouse model with weekly tamoxifen intraperitoneal injections, resulting in a more controllable and severe model. Owing to the titratable dosing, this model now recapitulates both early and advanced stages of the human disease, strengthening its use in therapeutic studies.

View Article and Find Full Text PDF

Integrin α6β4 subunits and type XVII collagen are critical transmembrane proteins involved in cell-matrix adhesion in skin, while laminin 332 serves as their ligand in the basement membrane zone (BMZ). Those proteins contribute to the composition of hemidesmosomes (HDs) and pathogenic variants in their corresponding genes cause junctional epidermolysis bullosa (JEB). Although the genotype-phenotype relationships in JEB have been extensively studied, the pathogenetic changes of extracellular matrix (ECM) and cell-matrix adhesion resulting from gene mutations remain unclear.

View Article and Find Full Text PDF

Integrin mutations in blistering skin diseases and related genetically engineered mouse models.

Hum Immunol

November 2024

Department of Surgery Albany Medical College, Albany, NY 12208, USA; Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA. Electronic address:

As major receptors for cellular adhesion, integrins in the epidermis are critical to maintain skin integrity. Integrins α6β4 and α3β1 are among the most highly and widely expressed integrins in the skin. Perhaps not surprisingly, mutation in subunits associated with these integrins cause variations of a blistering skin disease called junctional epidermolysis bullosa (JEB), which is characterized by blisters that form between the epidermis and dermis of the skin.

View Article and Find Full Text PDF

Integrin α6β4 drives triple-negative breast cancer (TNBC) aggressiveness through the transcriptional regulation of key genes. Here, we investigated how integrin α6β4 regulates protein tyrosine phosphatase receptor type Z1 (PTPRZ1). Using stable re-expression of integrin β4 (ITGB4) in cells naturally devoid of integrin α6β4 or knockdown or knockout (KO) of ITGB4, we found that integrin α6β4 regulates PTPRZ1 expression.

View Article and Find Full Text PDF

Breast cancer-derived CAV1 promotes lung metastasis by regulating integrin α6β4 and the recruitment and polarization of tumor-associated neutrophils.

Int J Biol Sci

November 2024

The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China.

Lung metastasis in breast cancer (BC) patients is one of the main reasons for their high mortality rate. The most prevalent BC small extracellular vesicles (sEVs receptor, integrin α6β4, has been found to interact with surfactant-associated protein (SFTPC) in lung epithelial cells, making BC more likely to metastasize to the lung. Tumor-associated neutrophils (TANs) play an essential role in BC lung metastasis as a component of the lung pre-metastatic niche (PMN) with two sides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!