A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Avoiding unscheduled transcription in shared promoters: Saccharomyces cerevisiae Sum1p represses the divergent gene pair SPS18-SPS19 through a midsporulation element (MSE). | LitMetric

Avoiding unscheduled transcription in shared promoters: Saccharomyces cerevisiae Sum1p represses the divergent gene pair SPS18-SPS19 through a midsporulation element (MSE).

FEMS Yeast Res

Center for Physiology, Pathophysiology and Immunology, Institute of Physiology, Section of Physiology of Lipid Metabolism, Medical University of Vienna, Vienna, Austria.

Published: September 2009

The sporulation-specific gene SPS18 shares a common promoter region with the oleic acid-inducible gene SPS19. Both genes are transcribed in sporulating diploid cells, albeit unevenly in favour of SPS18, whereas in haploid cells grown on fatty acids only SPS19 is highly activated. Here, SPS19 oleate-response element (ORE) conferred activation on a basal CYC1-lacZ reporter gene equally in both orientations, but promoter analysis using SPS18-lacZ reporter constructs with deletions identified a repressing fragment containing a midsporulation element (MSE) that could be involved in imposing directionality towards SPS19 in oleic acid-induced cells. In sporulating diploids, MSEs recruit the Ndt80p transcription factor for activation, whereas under vegetative conditions, certain MSEs are targeted by the Sum1p repressor in association with Hst1p and Rfm1p. Quantitative real-time PCR demonstrated that in haploid sum1Delta, hst1Delta, or rfm1Delta cells, oleic acid-dependent expression of SPS18 was higher compared with the situation in wild-type cells, but in the sum1Delta mutant, this effect was diminished in the absence of Oaf1p or Pip2p. We conclude that SPS18 MSE is a functional element repressing the expression of both SPS18 and SPS19, and is a component of a stricture mechanism shielding SPS18 from the dramatic increase in ORE-dependent transcription of SPS19 in oleic acid-grown cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2784042PMC
http://dx.doi.org/10.1111/j.1567-1364.2009.00527.xDOI Listing

Publication Analysis

Top Keywords

midsporulation element
8
element mse
8
sps19 oleic
8
expression sps18
8
sps18
6
sps19
6
cells
6
avoiding unscheduled
4
unscheduled transcription
4
transcription shared
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!