Inosine 5' monophosphate dehydrogenase (IMPDH II) is a key enzyme involved in the de novo biosynthesis pathway of purine nucleotides and is also considered to be an excellent target for cancer inhibitor design. The conserve R 322 residue (in human) is thought to play some role in the recognition of inhibitor and cofactor through the catalytic D 364 and N 303. The 15 ns simulation and the water dynamics of the three different PDB structures (1B3O, 1NF7, and 1NFB) of human IMPDH by CHARMM force field have clearly indicated the involvement of three conserved water molecules (W(L), W(M), and W(C)) in the recognition of catalytic residues (R 322, D 364, and N 303) to inhibitor and cofactor. Both the guanidine nitrogen atoms (NH1 and NH 2) of the R 322 have anchored the di- and mono-nucleotide (cofactor and inhibitor) binding domains via the conserved W(C) and W(L) water molecules. Another conserved water molecule WM seems to bridge the two domains including the R 322 and also the W(C) and W(L) through seven centers H-bonding coordination. The conserved water molecular triad (W(C)-W(M)-W(L)) in the protein complex may thought to play some important role in the recognition of inhibitor and cofactor to the protein through R 322 residue.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2009.10507304DOI Listing

Publication Analysis

Top Keywords

conserved water
20
inhibitor cofactor
12
water molecular
8
molecular triad
8
322 residue
8
thought play
8
play role
8
role recognition
8
recognition inhibitor
8
364 303
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!