Advanced Monte Carlo approach to study evolution of quartz surface during the dissolution process.

J Am Chem Soc

104 Chemistry Building, Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.

Published: July 2009

A newly developed Monte Carlo (MC) algorithm designed to study the complex interplay of dissolution and precipitation reactions on mineral surface is presented. This algorithm utilizes existing advanced reactive and configurational-biased MC techniques with new protocols specific for mineral-water interfaces. This time-independent methodology is especially advantageous for studying the kinetically slow quartz-water dissolution process. The aim is to use this method to understand the role of the local arrangement of reactive sites and surface topography in the surface evolution during dissolution. The simulations were performed in neutral pH medium, and two possible dissolution mechanisms were tested. The results indicate that out of the direct and stepwise mechanisms, the direct mechanism leads to complete dissolution that is not experimentally observed in the natural environment. On the other hand, the stepwise dissolution is more realistic, as it resembles the experimentally observed steady-state dissolution of the quartz-water system. These simulations identify the least coordinated surface sites (Q(1)) as the primary reactive site for hydrolysis and precipitation. Other surface sites (Q(2) and Q(3)) also undergo hydrolysis, but they are sterically hindered and are turned passive by precipitating Q(1) groups. The conclusions from the simulations are dominated by the surface topology of quartz; thus, we believe that the results are applicable for other polymorphs of silica and other protonation conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja901305yDOI Listing

Publication Analysis

Top Keywords

monte carlo
8
dissolution
8
dissolution process
8
experimentally observed
8
surface sites
8
surface
7
advanced monte
4
carlo approach
4
approach study
4
study evolution
4

Similar Publications

To accurately model and validate the 6 MV Elekta Compactlinear accelerator using the Geant4 Application for Tomographic Emission (GATE). In particular, this study focuses on the precise calibration and validation of critical parameters, including jaw collimator positioning, electron source nominal energy, flattening filter geometry, and electron source spot size, which are often not provided in technical documentation. Methods: Simulation of the Elekta Compact6 MV linear accelerator was performed using the Geant4 Application for Tomographic Emission (GATE) v.

View Article and Find Full Text PDF

Full Quantum Dynamics Study for H Atom Scattering from Graphen.

J Phys Chem A

January 2025

Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay UMR 8214, 91405 Orsay, France.

This study deals with the understanding of hydrogen atom scattering from graphene, a process critical for exploring C-H bond formation and energy transfer during atom surface collision. In our previous work [Shi, L.; 2023, 159, 194102], starting from a cell with 24 carbon atoms treated periodically, we have achieved quantum dynamics (QD) simulations with a reduced-dimensional model (15D) and a simulation in full dimensionality (75D).

View Article and Find Full Text PDF

Background: Radiographic skeletal survey plays an important role in the diagnosis of infant abuse. Some practitioners have expressed concerns about the radiation exposure from this examination.

Objective: To utilize state-of-the-art hybrid computational phantoms to more accurately estimate radiation doses of skeletal surveys performed for suspected infant abuse.

View Article and Find Full Text PDF

Cu-Ni Oxidation Mechanism Unveiled: A Machine Learning-Accelerated First-Principles and TEM Study.

Nano Lett

January 2025

Department of Mechanical Engineering & Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.

The development of accurate methods for determining how alloy surfaces spontaneously restructure under reactive and corrosive environments is a key, long-standing, grand challenge in materials science. Using machine learning-accelerated density functional theory and rare-event methods, in conjunction with environmental transmission electron microscopy (ETEM), we examine the interplay between surface reconstructions and preferential segregation tendencies of CuNi(100) surfaces under oxidation conditions. Our modeling approach predicts that oxygen-induced Ni segregation in CuNi alloys favors Cu(100)-O c(2 × 2) reconstruction and destabilizes the Cu(100)-O (2√2 × √2)45° missing row reconstruction (MRR).

View Article and Find Full Text PDF

Heteroconfinement in Single CdTe Nanoplatelets.

ACS Nano

January 2025

Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, United States.

Dimension-engineered synthesis of atomically thin II-VI nanoplatelets (NPLs) remains an open challenge. While CdSe NPLs have been made with confinement ranging from 2 to 11 monolayers (ML), CdTe NPLs have been significantly more challenging to synthesize and separate. Here we provide detailed mechanistic insight into the layer-by-layer growth kinetics of the CdTe NPLs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!