A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Structure and growth of vapor-deposited n-dotriacontane films studied by X-ray reflectivity. | LitMetric

AI Article Synopsis

  • Researchers used synchrotron X-ray reflectivity to study the structure of n-dotriacontane (C32) films deposited from vapor onto SiO(2) surfaces, aiming to compare it with solution-deposited films.
  • The vapor-deposited films were about 50 Angstroms thick, stable in air, and showed a growth pattern starting with a complete bilayer of molecules aligned parallel to the surface, similar to solution-deposited films.
  • After thermal cycling above the melting point, the structural changes in vapor-deposited samples matched a previously inferred phase diagram for solution-deposited films, clarifying discrepancies reported by other researchers regarding different film deposition methods.

Article Abstract

We have used synchrotron X-ray reflectivity measurements to investigate the structure of n-dotriacontane (n-C(32)H(66) or C32) films deposited from the vapor phase onto a SiO(2)-coated Si(100) surface. Our primary motivation was to determine whether the structure and growth mode of these films differ from those deposited from solution on the same substrate. The vapor-deposited films had a thickness of approximately 50 A thick as monitored in situ by high-resolution ellipsometry and were stable in air. Similar to the case of solution-deposited C32 films, we find that film growth in vacuum begins with a nearly complete bilayer adjacent to the SiO(2) surface formed by C32 molecules aligned with their long axis parallel to the interface followed by one or more partial layers of perpendicular molecules. These molecular layers coexist with bulk particles at higher coverages. Furthermore, after thermally cycling our vapor-deposited samples at atmospheric pressure above the bulk C32 melting point, we find the structure of our films as a function of temperature to be consistent with a phase diagram inferred previously for similarly treated solution-deposited films. Our results resolve some of the discrepancies that Basu and Satija (Basu, S.; Satija, S. K. Langmuir 2007, 23, 8331) found between the structure of vapor-deposited and solution-deposited films of intermediate-length alkanes at room temperature.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la901808tDOI Listing

Publication Analysis

Top Keywords

structure growth
8
films
8
x-ray reflectivity
8
c32 films
8
solution-deposited films
8
basu satija
8
structure
5
vapor-deposited
4
growth vapor-deposited
4
vapor-deposited n-dotriacontane
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!