Seasonal ammonia emissions from a free-stall dairy in central Texas.

J Air Waste Manag Assoc

Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, USA.

Published: May 2009

Studies show that agricultural and animal feeding operations (AFOs) contribute a considerable amount of ammonia (NH3) to the atmosphere. Agricultural NH3 emissions are recognized as an important air quality issue. Biological decomposition of manure from dairy operations results in emissions of NH3 and other gases. There is a need to determine NH3 emission factors (EFs) to compile annual NH3 inventories. NH3 emissions should be estimated from different ground-level area sources (GLAS) including open-lots (cows on earthen corrals), free-stalls (cows in barns), manure composting sites, primary and secondary lagoons, separated solids, and milking parlors. A protocol using flux chambers was used to determine NH3 EFs from different GLAS of a free-stall dairy in central Texas. Data including NH3 emissions from GLAS were collected during winter and summer seasons. NH3 concentration measurements were made using chemiluminescence-based analyzers. The EFs for the free-stall dairy were estimated as 11 +/- 4.9 (confidence interval [CI]) kg-NH3 x yr(-1) x head(-1) for summer and 4.7 +/- 4.9 kg-NH3 x yr(-1) x head(-1) for winter. The estimated annual NH3 EF was 8.4 +/- 4.9 kg-NH3 x yr(-1) head(-1) for this free-stall dairy. This seasonal difference was attributed to temperature, loading rate of dairy waste, and manure bacterial activity of GLAS. In winter, composted manure and free-stalls contributed nearly 77% of the total NH3 emissions for the dairy; however, in summer, two lagoons at the dairy contributed 65% of the overall NH3 emissions.

Download full-text PDF

Source
http://dx.doi.org/10.3155/1047-3289.59.5.513DOI Listing

Publication Analysis

Top Keywords

nh3 emissions
20
free-stall dairy
16
nh3
12
kg-nh3 yr-1
12
yr-1 head-1
12
dairy
8
dairy central
8
central texas
8
determine nh3
8
annual nh3
8

Similar Publications

Synergetic effects of cerium and titanium on the catalytic performance of NiMnO for selective catalytic reduction of NO by NH.

Environ Sci Pollut Res Int

January 2025

Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran.

In this work, NiMnO/TiO-CeO (Ce = 1.15, 2.5, 5, 7.

View Article and Find Full Text PDF

Tandem Reaction on Ru/Cu-CHA Catalysts for Ammonia Elimination with Enhanced Activity and Selectivity.

Environ Sci Technol

January 2025

State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

Ammonia emissions from vehicles and power plants cause severe environmental issues, including haze pollution and nitrogen deposition. Selective catalytic oxidation (SCO) is a promising technology for ammonia abatement, but current catalysts often struggle with insufficient activity and poor nitrogen selectivity, leading to the formation of secondary pollutants. In this study, we developed a bifunctional Ru/Cu-CHA zeolite catalyst for ammonia oxidation, incorporating both SCO sites (Ru) and selective catalytic reduction sites (SCR, Cu).

View Article and Find Full Text PDF

Striking Improvement of N Selectivity in NH Oxidation Reaction on FeO-Based Catalysts via SiO Doping.

Inorg Chem

January 2025

State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.

The emission of NH has been reported to pose a serious threat to both human health and the environment. To efficiently eliminate NH, catalysts for the selective catalytic oxidation of NH (NH-SCO) have been intensively studied. FeO-based catalysts were found to exhibit superior NH oxidation activity; however, the low N selectivity made it less attractive in practical applications.

View Article and Find Full Text PDF

Gases and dissolved black carbon (DBC) formed during pyrolysis of nitrogen-rich feedstock would affect atmospheric and aquatic environments. Yet, the mechanisms driving biomass gas evolution and DBC formation are poorly understood. Using thermogravimetric-Fourier transform infrared spectrometry and two-dimensional correlation spectroscopy, we correlated the temperature-dependent primary noncondensable gas release sequence (HO → CO → HCN, NH → CH → CO) with specific defunctionalization stages in the order: dehydration, decarboxylation, denitrogenation, demethylation, and decarbonylation.

View Article and Find Full Text PDF

Sources of PM exposure and health benefits of clean air actions in Shanghai.

Environ Int

January 2025

Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Joint International Research Laboratory of Climate and Environment Change, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China.

Estimating PM exposure and its health impacts in cities involves large uncertainty due to the limitations of model resolutions. Consequently, attributing the sources of PM-related health impacts at the city level remains challenging. We characterize the health impacts associated with chronic PM exposure and anthropogenic emissions in Shanghai using a chemical transport model (GEOS-Chem) and its adjoint.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!