We propose the adjuvant effects of phospholipid liposome compositions using intranasal inoculation of a liposomal-Newcastle disease virus (NDV) vaccine in chickens. The immunogenicity of three liposome formulations was determined in chickens using the hemagglutination-inhibition (HI) test, nasal secretory immunoglobulin A and serum immunoglobulin A (IgG) antibody titers using the enzyme-linked immunosorbent assay. The immune response against NDV antigens was determined after immunization with neutral charged liposomes composed of egg phosphatidylcholine (EPC) (60 micromol), cholesterol (Chol) (15 micromol), and EPC-liposomes (EPC-Lip), which elicited strong systemic (serum) and local (nasal) humoral responses. However, the intranasal administration with cationic charged liposomes composed of EPC (30 micromol), stearylamine (SA) (15 micromol), Chol (15 micromol), and SA-liposomes (SA-Lip) induced poor humoral immune responses. Only the vaccine formulated with anionic charged liposomes composed of EPC (30 micromol), dipalmitoylphosphatidylserine (15 micromol), Chol (15 micromol), and phosphatidylserine-liposomes (PS-Lip) elicited the highest titers of HI antibodies. These are the first results to suggest that antigen delivery using EPC-Lip is very useful in enhancing antibody production at the mucosal site and in serum.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.b.31437 | DOI Listing |
ACS Nano
January 2025
Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States.
Characterization of individual biological nanoparticles can be significantly improved by coupling complementary analytical methods. Here, we combine resistive-pulse sensing (RPS) with fluorescence lifetime imaging microscopy (FLIM) to differentiate liposomes at the single-particle level. RPS measures the particle volume, shape, and surface-charge density, and FLIM determines the fluorescence lifetime of the fluorophore associated with the lipid membrane.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkiye; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan. Electronic address:
Recently, cancer therapy has witnessed remarkable advancements with a growing focus on precision medicine and targeted drug delivery strategies. The application of anionic polysaccharides has gained traction in various drug delivery systems. Anionic polysaccharides have emerged as promising delivery carriers in cancer therapy and theranostics, offering numerous advantages such as biocompatibility, low toxicity, and the ability to encapsulate and deliver therapeutic agents to tumor sites with high specificity.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China. Electronic address:
pH changes occur during bodily lesions, presenting an opportunity for leveraging pH-responsive delivery systems as signals for a targeted response. This review explores the design and application of pH-responsive delivery systems based on natural polysaccharides for the controlled release of bioactives. The article examines the development of diverse delivery carriers, including nanoparticles, nanofibers, nanogels, core-shell carriers, hydrogels, emulsions as well as liposomes and their capacity to respond to pH variations, enabling the precise and targeted delivery of bioactives within the human body.
View Article and Find Full Text PDFMembranes (Basel)
December 2024
Institute of Physics, Opole University, Oleska 48, 45-052 Opole, Poland.
This article investigates the influence of dopant molecules on the structural and dynamic properties of lipid bilayers in liposomes, with a focus on the effects of dopant concentration, size, and introduced electric charge. Experimental studies were performed using electron paramagnetic resonance (EPR) spectroscopy with spin probes, complemented by Monte Carlo simulations. Liposomes, formed via lecithin sonication, were doped with compounds of varying concentrations and analyzed using EPR spectroscopy to assess changes in membrane rigidity.
View Article and Find Full Text PDFBiomed Rep
February 2025
Department of Molecular Pharmaceutics, Hoshi University, Shinagawa, Tokyo 142-8501, Japan.
Previously, it was reported that mRNA/cationic liposome complexes (mRNA lipoplexes) composed of the cationic triacyl lipid, 11-((1,3-bis(dodecanoyloxy)-2-((dodecanoyloxy)methyl)propan-2-yl)amino)-,,- trimethyl-11-oxoundecan-1-aminium bromide (TC-1-12), with 1,2-dioleoyl-glycero-3-phosphoethanolamine and poly(ethylene glycol) cholesteryl ether, induce high protein expression in human cervical carcinoma HeLa cells. In the present study, the authors aimed to optimize mRNA transfection using TC-1-12-based mRNA lipoplexes. mRNA lipoplexes were prepared at various charge ratios (+:-) using modified ethanol injection (MEI) and thin-film hydration (TFH) methods and compared the protein expression efficiency after transfection of HeLa cells with the developed mRNA lipoplexes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!