Canister integrity and radionuclides retention is of prime importance for assessing the long term safety of nuclear waste stored in engineered geologic depositories. A comparative investigation of the interaction of uranyl ion with three different mineral surfaces has thus been undertaken in order to point out the influence of surface composition on the adsorption mechanism(s). Periodic DFT calculations using plane waves basis sets with the GGA formalism were performed on the TiO(2)(110), Al(OH)(3)(001) and Ni(111) surfaces. This study has clearly shown that three parameters play an important role in the uranyl adsorption mechanism: the solvent (H(2)O) distribution at the interface, the nature of the adsorption site and finally, the surface atoms' protonation state.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2705509 | PMC |
http://dx.doi.org/10.3390/ijms10062633 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!