Experimental demonstration of an all-fiber, all-optical continuously tunable delay line is reported. The 1.56-micros delay with a record 62,400 time-delay bit-rate product was characterized for a 40-Gbps data channel. The result was enabled by parametric dispersion compensation with cascaded triple-conversion in highly-nonlinear fiber capable of continuous tuning over 39.5 nm.

Download full-text PDF

Source
http://dx.doi.org/10.1364/oe.17.011958DOI Listing

Publication Analysis

Top Keywords

continuously tunable
8
156-micros continuously
4
tunable parametric
4
parametric delay
4
delay 40-gb/s
4
40-gb/s signal
4
signal experimental
4
experimental demonstration
4
demonstration all-fiber
4
all-fiber all-optical
4

Similar Publications

In this Letter, we present an all-fiber bismuth (Bi)-doped germanosilicate fiber laser that is continuously tunable within the range of 1425-1475 nm, enabled by a tunable optical filter. A maximum output power of 86.4 mW was achieved at 1450 nm with a slope efficiency of 13.

View Article and Find Full Text PDF

Tunable Generation of Spatial Entanglement in Nonlinear Waveguide Arrays.

Phys Rev Lett

December 2024

Université Paris Cité, CNRS, Laboratoire Matériaux et Phénomènes Quantiques, 75013 Paris, France.

Harnessing high-dimensional entangled states of light presents a frontier for advancing quantum information technologies, from fundamental tests of quantum mechanics to enhanced computation and communication protocols. In this context, the spatial degree of freedom stands out as particularly suited for on-chip integration. But while traditional demonstrations produce and manipulate path-entangled states sequentially with discrete optical elements, continuously coupled nonlinear waveguide systems offer a promising alternative where photons can be generated and interfere along the entire propagation length, unveiling novel capabilities within a reduced footprint.

View Article and Find Full Text PDF

Ultrafast synthesis of zirconium-porphyrin framework nanocrystals from alkoxide precursors.

Cell Rep Phys Sci

December 2024

Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Física de Partículas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.

Porphyrinic metal-organic frameworks (MOFs) offer high surface areas and tunable catalytic and optoelectronic properties, making them versatile candidates for applications in phototherapy, drug delivery, photocatalysis, electronics, and energy storage. However, a key challenge for industrial integration is the rapid, cost-effective production of suitable sizes. This study introduces Zr(IV) alkoxides as metal precursors, achieving ultrafast (∼minutes) and high-yield (>90%) synthesis of three well-known Zr-based porphyrinic MOF nanocrystals: MOF-525, PCN-224, and PCN-222, each with distinct topologies.

View Article and Find Full Text PDF

Due to people's environmental awareness and the continuous improvement of the living environment requirements, the pollution problem of fine particles has attracted widespread attention and great importance. Therefore, the development of new green and environmentally friendly air filtration materials with high efficiency and low resistance is ongoing. In this work, eco-friendly zein/ethylcellulose blende nanofiber membranes with different fiber morphologies, diameter sizes, and hydrophobicity are prepared by electrospinning technology, and their performance in the field of air filtration and purification is investigated, to make them highly efficient for the adsorption of small pollutants of various polarities.

View Article and Find Full Text PDF

Volatile organic compounds (VOCs) are an ever-growing hazard for health and environment due to their increased emissions and accumulation in the air. Quantum cascade laser-based infrared (QCL-IR) sensors hold significant promise for gas monitoring, thanks to their compact, rugged design, high laser intensity, and high molecule-specific detection capabilities within the mid-infrared spectrum's fingerprint region. In this work, tunable external cavity QCLs were complemented by an innovative germanium-on-silicon integrated optics waveguide sensing platform with integrated microlenses for efficient backside optical interfacing for the tunable laser spectrometer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!