Microfluidic channels and Bragg Grating Waveguides (BGWs) were simultaneously fabricated inside fused silica glass by means of femtosecond laser exposure followed by chemical etching. Evanescent field penetration of the waveguide mode into the parallel microfluidic channel induced Bragg resonant wavelength shifts to enable refractive index characterization of the fluidic medium in the 1 to 1.452 range. Laser exposure was optimized to fabricate devices with optically smooth channel walls and narrow Bragg resonances for high sensing response at 1560 nm wavelength. Reference gratings were also employed in the optical circuit for temperature and strain compensation. These devices open new directions for optical sensing in three-dimensional optofluidic and reactor microsystems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/oe.17.011719 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!