AI Article Synopsis

  • - Microscopy is essential for biology but struggles with poor light contrast when imaging thick samples due to light attenuation and scattering.
  • - The decay of light intensity in microscopy images creates uneven illumination, which traditional deconvolution methods cannot effectively address.
  • - This paper introduces a new physics-based approach that successfully restores contrast in microscopy images, validated through simulations and real experiments.

Article Abstract

Microscopy has become a de facto tool for biology. However, it suffers from a fundamental problem of poor contrast with increasing depth, as the illuminating light gets attenuated and scattered and hence can not penetrate through thick samples. The resulting decay of light intensity due to attenuation and scattering varies exponentially across the image. The classical space invariant deconvolution approaches alone are not suitable for the restoration of uneven illumination in microscopy images. In this paper, we present a novel physics-based field theoretical approach to solve the contrast degradation problem of light microscopy images. We have confirmed the effectiveness of our technique through simulations as well as through real field experimentations.

Download full-text PDF

Source
http://dx.doi.org/10.1364/oe.17.011294DOI Listing

Publication Analysis

Top Keywords

field theoretical
8
light microscopy
8
microscopy images
8
light
5
theoretical restoration
4
restoration method
4
method images
4
images degraded
4
degraded non-uniform
4
non-uniform light
4

Similar Publications

We argue that "processes versus objects" is not a useful dichotomy. There is, instead, substantial theoretical utility in viewing "objects" and "processes" as complementary ways of describing persistence through time, and hence the possibility of observation and manipulation. This way of thinking highlights the role of memory as an essential resource for observation, and makes it clear that "memory" and "time" are also mutually inter-defined, complementary concepts.

View Article and Find Full Text PDF

Design Strategy of PepNzymes-SH for an Emerging Catalyst with Serine Hydrolase-Like Functionality.

ACS Appl Mater Interfaces

January 2025

CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.

Serine hydrolases, as a class of green catalysts with hydrolytic and dehydrating activities, hold significant application value in the fields of biosynthesis and organic synthesis. However, practical applications face numerous challenges, including maintaining enzyme stability and managing usage costs. PepNzymes-SH, an emerging green catalytic material with enzyme-like activity, overcomes the operational limitations of natural enzymes and holds great promise as a substitute for hydrolases.

View Article and Find Full Text PDF

Improving Bond Dissociations of Reactive Machine Learning Potentials through Physics-Constrained Data Augmentation.

J Chem Inf Model

January 2025

Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.

In the field of computational chemistry, predicting bond dissociation energies (BDEs) presents well-known challenges, particularly due to the multireference character of reactive systems. Many chemical reactions involve configurations where single-reference methods fall short, as the electronic structure can significantly change during bond breaking. As generating training data for partially broken bonds is a challenging task, even state-of-the-art reactive machine learning interatomic potentials (MLIPs) often fail to predict reliable BDEs and smooth dissociation curves.

View Article and Find Full Text PDF

Soluble Covalent Organic Frameworks as Efficient Lithiophilic Modulator for High-Performance Lithium Metal Batteries.

Angew Chem Int Ed Engl

January 2025

City University of Hong Kong, Department of Physics and Materials Science, 83 Tat Chee Ave, Kowloon Tong, 999077, Hong Kong, HONG KONG.

Lithium metal batteries (LMBs) are regarded as the potential alternative of lithium-ion batteries due to their ultrahigh theoretical specific capacity (3860 mAh g-1). However, severe instability and safety problems caused by the dendrite growth and inevitable side reactions have hindered the commercialization of LMBs. To solve them, in this contribution, a design strategy of soluble lithiophilic covalent organic frameworks (COFs) is proposed.

View Article and Find Full Text PDF

A theoretical method is proposed for generating far-zone scattered fields with concentric ring-like intensity distribution by properly controlling the distribution characteristics of particles. As an example, a collection of anisotropic Gaussian-centered determinate particles with quasi-homogeneous distribution is discussed. The results show that the number and size of concentric rings can be flexibly adjusted by controlling the structural parameters of the collection of particles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!