Compact quantum dot probes for rapid and sensitive DNA detection using highly efficient fluorescence resonant energy transfer.

Nanotechnology

Biological Engineering Department, University of Missouri, 240D Bond Life Sciences Center, 1201 E Rollins Street, Columbia, MO 65211, USA.

Published: July 2009

We developed a simple method for quickly synthesizing compact quantum dot (QD)-DNA probes for sensitive DNA detection using fluorescence resonant energy transfer (FRET). The density of DNA probes on the QD surface was controlled to avoid steric hindrance and to promote rapid hybridization with target DNA molecules. The radius of the final QDs was only around 3 nm after applying the functional coating, enabling highly efficient energy transfer. It was demonstrated that nearly 70% transfer efficiency could be achieved with only a few DNA molecules on each QD and that the FRET-based DNA detection could be carried out within 10 min with a sub-nM detection limit. Theoretical analysis was also performed to confirm our results.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/20/30/305502DOI Listing

Publication Analysis

Top Keywords

dna detection
12
energy transfer
12
compact quantum
8
quantum dot
8
sensitive dna
8
highly efficient
8
fluorescence resonant
8
resonant energy
8
dna molecules
8
dna
6

Similar Publications

Background: Leptospirosis is a widespread zoonosis caused by bacteria in the genus Leptospira. Basic epidemiological information is crucial to mitigating disease risk but is lacking for leptospirosis; notably, the hosts responsible for maintaining Leptospira remain largely unknown. Frequently observed near human habitations, hedgehogs (Erinaceus europaeus) are taken to wildlife rescue centres when found sick or injured.

View Article and Find Full Text PDF

Background/objectives: This study builds on previous findings from mouse models, which showed that maternal overnutrition induced by a high-fat diet (HFD) promotes metabolic-associated fatty liver disease (MAFLD) in offspring, linked to global DNA hypermethylation. We explored whether epigenetic modulation with 5-Aza-CdR, a DNA methylation inhibitor, could prevent MAFLD in offspring exposed to maternal overnutrition.

Methods: The offspring mice from dams of maternal overnutrition were fed either a chow diet or a high-fat diet (HFD) for 10 weeks.

View Article and Find Full Text PDF

The number of genetically modified (GMO) events for canola, corn, and soybean is steadily increasing. Some countries, including those in the EU, have regulatory requirements for the approval and use of plant ingredients containing GMOs. Multiplex digital PCR (dPCR) has been used for the simultaneous detection and quantification of various GMO events.

View Article and Find Full Text PDF

Ochratoxin A (OTA) is a mycotoxin, a common contaminant of grapes and their derivatives, such as wine, and classified as possible human carcinogen (group 2B) by the International Agency for Research on Cancer (IARC). is the main producer of OTA in grapes. The stability of the molecule and the poor availability of detoxification systems makes the control of in vineyards the main strategy used to reduce OTA contamination risk.

View Article and Find Full Text PDF

Prevalence of Antibiotic Resistance Genes in Differently Processed Smoothies and Fresh Produce from Austria.

Foods

December 2024

Division of Data, Statistics and Risk Assessment, Austrian Agency for Health and Food Safety AGES, 1220 Vienna, Austria.

Plant-derived foods are potential vehicles for microbial antibiotic resistance genes (ARGs), which can be transferred to the human microbiome if consumed raw or minimally processed. The aim of this study was to determine the prevalence and the amount of clinically relevant ARGs and mobile genetic elements (MGEs) in differently processed smoothies (freshly prepared, cold-pressed, pasteurized and high-pressure processed) and fresh produce samples (organically and conventionally cultivated) to assess potential health hazards associated with their consumption. The MGE and the class 1 integron-integrase gene were detected by probe-based qPCR in concentrations up to 10 copies/mL in all smoothies, lettuce, carrots and a single tomato sample.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!