The activation and recruitment of CD4(+) T cells are critical for the development of efficient antitumor immunity and may allow for the optimization of current cancer immunotherapy strategies. Searching for more optimal and selective targets for CD4(+) T cells, we have investigated phosphopeptides, a new category of tumor-derived epitopes linked to proteins with vital cellular functions. Although MHC I-restricted phosphopeptides have been identified, it was previously unknown whether human MHC II molecules present phosphopeptides for specific CD4(+) T cell recognition. We first demonstrated the fine specificity of human CD4(+) T cells to discriminate a phosphoresidue by using cells raised against the candidate melanoma antigen mutant B-Raf or its phosphorylated counterpart. Then, we assessed the presence and complexity of human MHC II-associated phosphopeptides by analyzing 2 autologous pairs of melanoma and EBV-transformed B lymphoblastoid lines. By using sequential affinity isolation, biochemical enrichment, mass spectrometric sequencing, and comparative analysis, a total of 175 HLA-DR-associated phosphopeptides were characterized. Many were derived from source proteins that may have roles in cancer development, growth, and metastasis. Most were expressed exclusively by either melanomas or transformed B cells, suggesting the potential to define cell type-specific phosphatome "fingerprints." We then generated HLA-DRbeta1*0101-restricted CD4(+) T cells specific for a phospho-MART-1 peptide identified in both melanoma cell lines. These T cells showed specificity for phosphopeptide-pulsed antigen-presenting cells as well as for intact melanoma cells. This previously undescribed demonstration of MHC II-restricted phosphopeptides recognizable by human CD4(+) T cells provides potential new targets for cancer immunotherapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2715484 | PMC |
http://dx.doi.org/10.1073/pnas.0903852106 | DOI Listing |
Sci Rep
January 2025
Experimental Pathology Department, National Institute of Medical Sciences and Nutrition Salvador Zubiran, Mexico City, Mexico.
It was a general belief that drug resistance in Mycobacterium tuberculosis (Mtb) was associated with lesser virulence, particularly rifampicin resistance, which is usually produced by mutations in the RNA polymerase Beta subunit (RpoB). Interestingly, this kind of bacterial mutations affect gene transcription with significant effects on bacterial physiology and metabolism, affecting also the bacterial antigenic constitution that in consequence can produce diverse immune responses and disease outcome. In the present study, we show the results of the Mtb clinical isolate A96, which is resistant to rifampicin and when used to infect BALB/c mice showed hypervirulence, apparently by rapidly polarization of the Th2 immune response through early and high production of IL-4.
View Article and Find Full Text PDFNat Commun
January 2025
Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom.
Fungal spores are abundant in the environment and a major cause of asthma. Originally characterised as a type 2 inflammatory disease, allergic airway inflammation that underpins asthma can also involve type 17 inflammation, which can exacerbate disease causing failure of treatments tailored to inhibit type 2 factors. However, the mechanisms that determine the host response to fungi, which can trigger both type 2 and type 17 inflammation in allergic airway disease, remain unclear.
View Article and Find Full Text PDFSci Rep
January 2025
Evidence-based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou City, No.199 Donggang West Road, 730000, Gansu Province, China.
Triple-negative breast cancer (TNBC) is characterized by the absence of estrogen and progesterone receptors, and lack of human epidermal growth factor receptor 2 (HER2) expression. Traditional Chinese medicine (TCM) has demonstrated promising efficacy in treating TNBC. This study explored the mechanisms of pachymic acid (PA) on TNBC by merging network pharmacology with experimental validation.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Biol Lipids
January 2025
Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Agia Paraskevi, Athens, Greece. Electronic address:
Human paraoxonase 1 (PON1) an enzyme bound to high-density lipoprotein (HDL) hydrolyzes oxidized lipids and contributes to HDL atheroprotective functions. Decreased serum paraoxonase and arylesterase activities of PON1 have been reported in patients at increased atherosclerosis risk, such as rheumatoid arthritis patients, and associated with arthritis severity and cardiovascular risk. Agents that can modulate PON1 activity and HDL-mediated effects have not been discovered.
View Article and Find Full Text PDFIntroduction: Activation of the inflammatory response system is involved in the pathogenesis of generalized anxiety disorder (GAD). The purpose of this study was to identify and characterize inflammatory biomarkers in the diagnosis of GAD based on machine learning algorithms.
Methods: The evaluation of peripheral immune parameters and lymphocyte subsets was performed on patients with GAD.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!