Background: The purpose of this statement is to address the state of evidence on the routine use of pulse oximetry in newborns to detect critical congenital heart disease (CCHD).
Methods And Results: A writing group appointed by the American Heart Association and the American Academy of Pediatrics reviewed the available literature addressing current detection methods for CCHD, burden of missed and/or delayed diagnosis of CCHD, rationale of oximetry screening, and clinical studies of oximetry in otherwise asymptomatic newborns. MEDLINE database searches from 1966 to 2008 were done for English-language papers using the following search terms: congenital heart disease, pulse oximetry, physical examination, murmur, echocardiography, fetal echocardiography, and newborn screening. The reference lists of identified papers were also searched. Published abstracts from major pediatric scientific meetings in 2006 to 2008 were also reviewed. The American Heart Association classification of recommendations and levels of evidence for practice guidelines were used. In an analysis of pooled studies of oximetry assessment performed after 24 hours of life, the estimated sensitivity for detecting CCHD was 69.6%, and the positive predictive value was 47.0%; however, sensitivity varied dramatically among studies from 0% to 100%. False-positive screens that required further evaluation occurred in only 0.035% of infants screened after 24 hours.
Conclusions: Currently, CCHD is not detected in some newborns until after their hospital discharge, which results in significant morbidity and occasional mortality. Furthermore, routine pulse oximetry performed on asymptomatic newborns after 24 hours of life, but before hospital discharge, may detect CCHD. Routine pulse oximetry performed after 24 hours in hospitals that have on-site pediatric cardiovascular services incurs very low cost and risk of harm. Future studies in larger populations and across a broad range of newborn delivery systems are needed to determine whether this practice should become standard of care in the routine assessment of the neonate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/CIRCULATIONAHA.109.192576 | DOI Listing |
BMC Ophthalmol
January 2025
College of Optometry, University of Houston College of Optometry, 4401 Martin Luther King Blvd, 77204-2020, Houston, TX, USA.
Background: This study evaluates retinal oxygen saturation and vessel density within the macula and correlates these measures in controls and subjects with type 2 diabetes (DM) with (DMR) and without (DMnR) retinopathy. Changes in retinal oxygen saturation have not been evaluated regionally in diabetic patients.
Methods: Data from seventy subjects (28 controls, 26 DMnR, and 16 DMR were analyzed.
Acta Paediatr
January 2025
Division of Neonatology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria.
Aim: The aim was to define reference ranges for cerebral oxygen saturation (crSO-ROOT) during immediate transition after birth in stable neonates.
Methods: In a prospective observational study, the crSO-ROOT was continuously measured in neonates during the first 15 min after birth. The neonatal sensor was placed on the head and fixed with a bandage.
Br J Anaesth
January 2025
Light and Health Research Center, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA. Electronic address:
Exp Physiol
January 2025
Department for Automatics, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia.
The physiological sequelae of pre-term birth might influence the responses of this population to hypoxia. Moreover, identifying variables associated with development of acute mountain sickness (AMS) remains a key practically significant area of altitude research. We investigated the effects of pre-term birth on nocturnal oxygen saturation ( ) dynamics and assessed the predictive potential of nocturnal -related metrics for morning AMS in 12 healthy adults with gestational age < 32 weeks (pre-term) and 12 term-born control participants.
View Article and Find Full Text PDFAcad Emerg Med
January 2025
Department of Emergency Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA.
Objectives: Identifying patients in the emergency department (ED) at higher risk for in-hospital mortality can inform shared decision making and goals-of-care discussions. Electronic health record systems allow for integrated multivariable logistic regression (LR) modeling, which can provide early predictions of mortality risk in time for crucial decision making during a patient's initial care. Many commonly used LR models require blood gas analysis values, which are not frequently obtained in the ED.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!