RNA isolated from the glands of a Delta(9)-tetrahydrocannabinolic acid (THCA)-producing strain of Cannabis sativa was used to generate a cDNA library containing over 100 000 expressed sequence tags (ESTs). Sequencing of over 2000 clones from the library resulted in the identification of over 1000 unigenes. Candidate genes for almost every step in the biochemical pathways leading from primary metabolites to THCA were identified. Quantitative PCR analysis suggested that many of the pathway genes are preferentially expressed in the glands. Hexanoyl-CoA, one of the metabolites required for THCA synthesis, could be made via either de novo fatty acids synthesis or via the breakdown of existing lipids. qPCR analysis supported the de novo pathway. Many of the ESTs encode transcription factors and two putative MYB genes were identified that were preferentially expressed in glands. Given the similarity of the Cannabis MYB genes to those in other species with known functions, these Cannabis MYBs may play roles in regulating gland development and THCA synthesis. Three candidates for the polyketide synthase (PKS) gene responsible for the first committed step in the pathway to THCA were characterized in more detail. One of these was identical to a previously reported chalcone synthase (CHS) and was found to have CHS activity. All three could use malonyl-CoA and hexanoyl-CoA as substrates, including the CHS, but reaction conditions were not identified that allowed for the production of olivetolic acid (the proposed product of the PKS activity needed for THCA synthesis). One of the PKS candidates was highly and specifically expressed in glands (relative to whole leaves) and, on the basis of these expression data, it is proposed to be the most likely PKS responsible for olivetolic acid synthesis in Cannabis glands.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2736886PMC
http://dx.doi.org/10.1093/jxb/erp210DOI Listing

Publication Analysis

Top Keywords

expressed glands
12
thca synthesis
12
candidate genes
8
cannabis sativa
8
preferentially expressed
8
myb genes
8
olivetolic acid
8
genes
5
cannabis
5
glands
5

Similar Publications

[Solid, endometrial-like and transitional growth patterns of ovarian high-grade serous carcinoma: a clinicopathological analysis of 25 cases].

Zhonghua Bing Li Xue Za Zhi

February 2025

Department of Pathology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, China.

To investigate the clinicopathological characteristics of solid, endometrial-like and transitional (SET) cell growth subtype in high-grade serous ovarian carcinoma (HGSC). Clinical data of 25 cases of HGSC-SET were collected from January 2020 to March 2024 at the Affiliated Suzhou Hospital of Nanjing Medical University, and their histological features were analyzed. Immunohistochemical stains were used to analyze the expression of ER, PR, PAX8, WT-1, p16, p53 and Ki-67.

View Article and Find Full Text PDF

To investigate the clinicopathological features, diagnosis, genetic alterations, and biological behaviors of hamartomatous inverted hyperplastic polyp (HIHP) in the gastrointestinal tract. The clinical, sonographic, endoscopic and pathologic data of 10 HIHP cases diagnosed at the First Affiliated Hospital of Air Force Medical University, Xi'an, China from January 2013 to March 2024 were collected. Their clinicopathological features and histological morphology were analyzed.

View Article and Find Full Text PDF

Oxyntic gland neoplasms typically arise in Helicobacter pylori-naïve stomachs and are composed predominantly of chief cells, with a smaller component of parietal cells. The pathologic diagnosis can be challenging due to minimal cellular atypia. Especially in biopsy specimens with limited tumor volume or when pathologists have limited experience in diagnosing this neoplasm, distinguishing it from normal oxyntic glands can be difficult, and no reliable diagnostic markers are currently available.

View Article and Find Full Text PDF

Exposure to environmentally relevant levels of DEHP during development modifies the distribution and expression patterns of androgen receptors in the anterior pituitary in a sex-specific manner.

Chemosphere

January 2025

Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Instituto de Investigaciones en Ciencias de La Salud (INICSA), Córdoba, Argentina; Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica. Córdoba, Argentina. Electronic address:

DEHP is a prevalent phthalate with wide industrial applications and well-documented endocrine-disrupting effects, including the potential disruption of AR signaling in different tissues. The present study aimed to investigate the effects of gestational and lactational exposure to environmentally relevant DEHP concentrations on AR expression and subcellular localization in the pituitary gland, the master endocrine organ, with a focus on gonadotroph cells by in vivo and in vitro approaches. After DEHP exposure during gestation and lactation, a sex-specific modulation was detected in AR-positive pituitary cells and AR protein expression as assessed through flow cytometry and western blot.

View Article and Find Full Text PDF

Production of biologically active recombinant salmon calcitonin in Escherichia coli and fish cell line.

Arch Microbiol

January 2025

Aquatic Animal Health Laboratory, PG & Research Department of Zoology, C. Abdul Hakeem College, Melvisharam, Ranipet, Tamil Nadu, 632509, India.

Salmon calcitonin is a small peptide hormone synthesised and released by a specialised gland called ultimobranchial gland in fish. This hormone has been used to treat osteoporosis for over 50 years. The aim of this study was to compare the efficacy of five repeats of salmon calcitonin (5sCT) produced in two different hosts (bacteria and fish cell line).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!