Residual dipolar couplings (RDCs) between NC' and NC(alpha) atoms in polypeptide backbones of proteins contain information on the orientation of bond vectors that is complementary to that contained in NH RDCs. The (1)J(NC)(alpha) and (2)J(NC)(alpha) scalar couplings between these atoms also display a Karplus relation with the backbone torsion angles and report on secondary structure. However, these N-C couplings tend to be small and they are frequently unresolvable in frequency domain spectra having the broad lines characteristic of large proteins. Here a TROSY-based J-modulated approach for the measurement of small (15)N-(13)C couplings in large proteins is described. The cross-correlation interference effects inherent in TROSY methods improve resolution and signal to noise ratios for large proteins, and the use of J-modulation to encode couplings eliminates the need to remove frequency distortions from overlapping peaks during data analysis. The utility of the method is demonstrated by measurement of (1)J(NC'), (1)J(NC)(alpha) , and (2)J(NC)(alpha) scalar couplings and (1)D(NC') and D(NC)(alpha) residual dipolar couplings for the myristoylated yeast ARF1.GTPgammas protein bound to small lipid bicelles, a system with an effective molecule weight of approximately 70kDa.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2763284 | PMC |
http://dx.doi.org/10.1016/j.jmr.2009.06.010 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!