This study was done to determine if intranasal vaccination of weaned beef calves with a chimeric protein containing the immunodominant surface epitope of Mannheimia haemolytica PlpE (R2) and the neutralizing epitope of leukotoxin (NLKT) covalently linked to truncated cholera toxin (CT) subunit B (CTB) could stimulate secretory and systemic antibodies against M. haemolytica while enhancing resistance of cattle against M. haemolytica intrabronchial challenge. Sixteen weaned beef calves were intranasally vaccinated with CTB-R2-NLKT chimeric (SAC102) or with R2-NLKT-R2-NLKT chimeric (SAC89) protein with or without native CT on days 0 and 14 and were challenged intrabronchially on day 28. In vitro, SAC102 bound the CT receptor molecule, GM(1)-ganglioside. Mean IgA antibodies to M. haemolytica whole cells (WC) and to LKT were high on day 0. A small, yet significant increase (p<0.05) was found in mean nasal antibodies to M. haemolytica WC for the SAC89+CT and SAC102 vaccinates after the second vaccination. SAC102 stimulated significant (p<0.05) mean serum antibody responses to all three antigens by day 28. Following challenge, mean antibodies to WC and LKT significantly increased (p<0.05) for the SAC102, SAC89 and SAC89+CT groups with the mean antibody responses to rPlpE stimulated by SAC102 vaccination being significantly higher (p<0.05) than for the other vaccinated and control groups. On day 1 after challenge, mean clinical score for the control group was significantly higher (p<0.05) than for the SAC102 and SAC89+CT vaccinates, and by day 2 after challenge, clinical score for the control group was significantly higher (p<0.05) than for all three chimeric vaccinated groups. Therefore, intranasal vaccination with CTB-R2-NLKT (SAC102) and R2-NLKT-R2-NLKT (SAC89) chimeric proteins enhanced resistance against intrabronchial challenge with the bacterium as well as stimulating antibody responses to M. haemolytica antigens.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vetimm.2009.06.005DOI Listing

Publication Analysis

Top Keywords

intranasal vaccination
8
mannheimia haemolytica
8
chimeric protein
8
surface epitope
8
plpe neutralizing
8
neutralizing epitope
8
epitope leukotoxin
8
cholera toxin
8
toxin subunit
8
weaned beef
8

Similar Publications

Unlabelled: Current influenza vaccination approaches protect against specific viral strains, but do not consistently induce broad and long-lasting protection to the diversity of circulating influenza viruses. Single-cycle viruses delivered to the respiratory tract may offer a promising solution as they safely express a diverse array of viral antigens by undergoing just one round of cell infection in their host and stimulate broadly protective resident memory T-cell responses in the lung. We have previously developed a vaccine candidate called S-FLU, which is limited to a single cycle of infection by inactivation of the hemagglutinin signal sequence and induces a broadly cross-reactive T-cell response and antibodies to neuraminidase, but fails to induce neutralizing antibodies to hemagglutinin after intranasal administration.

View Article and Find Full Text PDF

Background: A broad-spectrum anti-SARS-CoV-2 monoclonal antibody (mAb), SA55, is highly effective against SARS-CoV-2 variants. This trial aimed at demonstrating the safety, tolerability, local drug retention and neutralizing activity, systemic exposure level, and immunogenicity of the SA55 nasal spray in healthy individuals.

Methods: This phase I, dose-escalation clinical trial combined an open-label design with a randomized, controlled, double-blind design.

View Article and Find Full Text PDF

Background: Influenza viruses with truncated NS1 proteins show promise as viral vectors and candidates for mucosal universal influenza vaccines. These mutant NS1 viruses, which lack the N-terminal half of the NS1 protein (124 a.a.

View Article and Find Full Text PDF

Background: Equine herpesvirus type 1 (EHV1) is a ubiquitous viral pathogen infecting the equine population worldwide. EHV1 infection causes respiratory illness, abortion, neonatal foal mortality, and myeloencephalopathy. The currently available modified live EHV1 vaccines have safety and efficacy limitations.

View Article and Find Full Text PDF

Intranasal vaccination enhances protection against respiratory viruses by providing stimuli to the immune system at the primary site of infection, promoting a balanced and effective response. Influenza vectors with truncated NS1 are a promising vaccine approach that ensures a pronounced local CD8+ T-cellular immune response. Here, we describe the protective and immunomodulating properties of an influenza vector FluVec-N carrying the C-terminal fragment of the SARS-CoV-2 nucleoprotein within a truncated NS1 open reading frame.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!