Background: Hyperbiliverdinaemia is a poorly defined clinical sign that has been infrequently reported in cases of liver cirrhosis or liver carcinoma, usually indicating a poor long-term prognosis.

Aims: To clarify the pathogenesis of hyperbiliverdinaemia in an extended case report.

Methods: A 64-year-old man with alcoholic cirrhosis was admitted to hospital with severe bleeding from oesophageal varices. Ultrasonography showed ascites, but no dilatation of the biliary tree. The skin, sclerae, plasma, urine and ascites of the patient showed a greenish appearance. Bilirubin levels were normal, and there were no signs of haemolysis. Biliverdin was analysed in plasma and urine with liquid chromatography coupled to mass spectrometry. The seven exonic regions of the biliverdin reductase-A (BVR-A) gene was amplified by polymerase chain reaction and sequenced.

Results: Biliverdin was present in plasma and urine. In nucleotide 52 of exon I of the DNA isolated from the hyperbiliverdinaemic patient, we discovered a novel heterozygous C-->T nonsense mutation converting an arginine (CGA) in position 18 into a stop codon (TGA) (R18Stop) predicted to truncate the protein N-terminally to the active site Tyr97. Two children of the proband were heterozygous for the identical mutation in the BVR-A gene, but had no clinical signs of liver disease and had normal levels of biliverdin. The BVR-A gene mutation was not found in 200 healthy volunteers or nine patients with end-stage liver cirrhosis.

Conclusion: Hyperbiliverdinaemia (green jaundice) with green plasma and urine may be caused by a genetic defect in the BVR-A gene in conjunction with decompensated liver cirrhosis.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1478-3231.2009.02029.xDOI Listing

Publication Analysis

Top Keywords

plasma urine
16
bvr-a gene
16
liver cirrhosis
12
biliverdin reductase-a
8
hyperbiliverdinaemia green
8
green jaundice
8
liver
6
biliverdin
5
gene
5
novel mutation
4

Similar Publications

Background & objectives Alkaptonuria (AKU) is an autosomal recessive disease wherein biallelic pathogenic variants in the homogentisate 1,2- dioxygenase (HGD) gene encoding the enzyme homogentisate 1,2 dioxygenase cause high levels of homogentisic acid (HGA) to circulate within the body leading to its deposition in connective tissues and excretion in urine. A homozygous splice donor variant (c.87+1G>A) has been identified to be the founder variant causing alkaptonuria among Narikuravars, a group of gypsies settled in Tamil Nadu.

View Article and Find Full Text PDF

The current study introduces the first micellar-enhanced spectrofluorimetric approach for the estimation of the commonly abused CNS antitussive, dextromethorphan (DXM) in its syrup and biological fluids. A micellar solution of sodium dodecyl sulfate (SDS) containing DXM showed high native fluorescence emission at 305 nm following excitation at 224 nm. Using SDS as a micellar system resulted in about a 2.

View Article and Find Full Text PDF

Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors derived from chromaffin cells, with 80-85% originating in the adrenal medulla and 15-20% from extra-adrenal chromaffin tissues (paragangliomas). Approximately 30-40% of PPGLs have a hereditary component, making them one of the most genetically predisposed tumor types. Recent advances in genetic research have classified PPGLs into three molecular clusters: pseudohypoxia-related, kinase-signaling, and -signaling pathway variants.

View Article and Find Full Text PDF

Amoxicillin Blood Concentration in High-Dose Intravenous Discontinuous Amoxicillin: Look Beyond Numbers. Max-Amox Study.

Clin Ther

December 2024

Department of Infectious Diseases, CHU Clermont-Ferrand, Clermont-Ferrand, France. Electronic address:

Purpose: High doses of amoxicillin are recommended to treat severe infections such as endocarditis. Amoxicillin causes dose-dependent toxicities, in particular crystal nephropathy. Toxicity could be avoided by monitoring of amoxicillin trough plasma concentrations (ATPC).

View Article and Find Full Text PDF

Resazurin dye is an in vivo sensor of kidney tubular function.

Kidney Int

December 2024

Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA. Electronic address:

Glomerular filtration rate (GFR) is the main functional index of kidney health and disease. Currently, no methods are available to directly measure tubular mass and function. Here, we report a serendipitous finding that the in vitro cell viability dye resazurin can be used in mice as an exogenous sensor of tubular function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!