Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The aim of this study was to determine whether albumin leakage and dark neurons were present in rat brains 14 and 50 days after a single 2-h exposure to a 915 MHz electromagnetic field, as reported by Salford et al. (Environ. Health Perspect. 111, 881-883, 203). Sixty-four male F344 rats (12 weeks old) were exposed to a 915 MHz electromagnetic field at whole-body average specific absorption rates of 0, 0.02, 0.2 and 2.0 W/kg in TEM cells for 2 h, following the protocol reported by Salford et al. The brains were examined histologically and immunohistochemically. No albumin immunoreactivity was observed in the exposed groups. In addition, dark neurons, assessed using hematoxylin and eosin staining, were rarely present, with no statistically significant difference between exposed and sham-exposed animals. This study thus failed to confirm the results of Salford et al.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1667/RR1542.1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!