DNA interstrand cross-links (ICLs) are products of chemotherapeutic agents and cellular metabolic processes that block both replication and transcription. If left unrepaired, ICLs are extremely toxic to cells, and ICL repair mechanisms contribute to the survival of certain chemotherapeutic resistance tumors. A critical step in ICL repair involves unhooking the cross-link. In the absence of a homologous donor sequence, the resulting gap can be filled in by a repair synthesis step involving bypass of the cross-link remnant. Here, we examine the effect of cross-link structure on the ability of unhooked DNA substrates to undergo repair synthesis in mammalian whole cell extracts. Using 32P incorporation assays, we found that repair synthesis occurs efficiently past the site of damage when a DNA substrate containing a single N4C-ethyl-N4C cross-link is incubated in HeLa or Chinese hamster ovary cell extracts. This lesion, which can base pair with deoxyguanosine, is readily bypassed by both Escherichia coli DNA polymerase I and T7 DNA polymerase in a primer extension assay. In contrast, bypass was not observed in the primer extension assay or in mammalian cell extracts when DNA substrates containing a N3T-ethyl-N3T or N1I-ethyl-N3T cross-link, whose linkers obstruct the hydrogen bond face of the bases, were used. A modified phosphorothioate sequencing method was used to analyze the ICL repair patches created in the mammalian cell extracts. In the case of the N4C-ethyl-N4C substrate, the repair patch spanned the site of the cross-link, and the lesion was bypassed in an error-free manner. However, although the N3T-ethyl-N3T and N1I-ethyl-N3T substrates were unhooked in the extracts, bypass was not detected. These and our previous results suggest that although the chemical structure of an ICL may not affect initial cross-link unhooking, it can play a significant role in subsequent processing of the cross-link. Understanding how the physical and chemical differences of ICLs affect repair may provide a better understanding of the cytotoxic and mutagenic potential of specific ICLs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2746369 | PMC |
http://dx.doi.org/10.1021/tx9000896 | DOI Listing |
EJNMMI Radiopharm Chem
January 2025
Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.
Background: Poly (ADP-ribose) polymerase (PARP) enzymes are crucial for the repair of DNA single-strand breaks and have become key therapeutic targets in homologous recombination-deficient cancers, including prostate cancer. To enable non-invasive monitoring of PARP-1 expression, several PARP-1-targeting positron emission tomography (PET) tracers have been developed. Here, we aimed to preclinically investigate [carbonyl-C]DPQ as an alternative PARP-1 PET tracer as it features a strongly distinct chemotype compared to the frontrunners [F]FluorThanatrace and [F]PARPi.
View Article and Find Full Text PDFCells
January 2025
Department of Physical Medicine and Rehabilitation, University of Missouri School of Medicine, Columbia, MO 65211, USA.
Amyotrophic Lateral Sclerosis (ALS) is a complex neurodegenerative disease primarily affecting motor neurons, leading to progressive muscle atrophy and paralysis. This review explores the role of Schwann cells in ALS pathogenesis, highlighting their influence on disease progression through mechanisms involving demyelination, neuroinflammation, and impaired synaptic function. While Schwann cells have been traditionally viewed as peripheral supportive cells, especially in motor neuron disease, recent evidence indicates that they play a significant role in ALS by impacting motor neuron survival and plasticity, influencing inflammatory responses, and altering myelination processes.
View Article and Find Full Text PDFCells
December 2024
Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium.
Definitive chemoradiotherapy (CRT) is a cornerstone of treatment for locoregionally advanced head and neck cancer (HNC). Research is ongoing on how to improve the tumor response to treatment and limit normal tissue toxicity. A major limitation in that regard is the growing occurrence of intrinsic or acquired treatment resistance in advanced cases.
View Article and Find Full Text PDFCells
December 2024
State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China.
Ubiquitin-conjugating enzyme E2 T (UBE2T) is a crucial E2 enzyme in the ubiquitin-proteasome system (UPS), playing a significant role in the ubiquitination of proteins and influencing a wide range of cellular processes, including proliferation, differentiation, apoptosis, invasion, and metabolism. Its overexpression has been implicated in various malignancies, such as lung adenocarcinoma, gastric cancer, pancreatic cancer, liver cancer, and ovarian cancer, where it correlates strongly with disease progression. UBE2T facilitates tumorigenesis and malignant behaviors by mediating essential functions such as DNA repair, apoptosis, cell cycle regulation, and the activation of oncogenic signaling pathways.
View Article and Find Full Text PDFCells
December 2024
Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, 4100 John R Street, Detroit, MI 48201, USA.
The DNA replication machinery is highly conserved from bacteria to eukaryotic cells. Faithful DNA replication is vital for cells to transmit accurate genetic information to the next generation. However, both internal and external DNA damages threaten the intricate DNA replication process, leading to the activation of the DNA damage response (DDR) system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!