Sodium alginate was hydrophobically modified by coupling of polybutyl methacrylate onto the alginate. The polybutyl methacrylate was previously prepared through polymerization of butyl methacrylate in the presence of 2-amino-ethanethiol as a chain transfer agent. The structure of the product was characterized by Fourier-transformed infrared spectrometry, nuclear magnetic resonance ((1)HNMR) and thermogravimetry. The result of fluorescence analysis showed that the hydrophobicity of the modified alginate was obviously increased. The modified alginate conjugate was used for immobilization of bovine serum albumin in the presence of calcium chloride. In addition, the release behavior of the drug-loaded alginate in deionized water and Tris-HCl buffer solution (pH 7.2) was investigated. It was found that the modified sodium alginate possessed prolonged release behavior compared to unmodified sodium alginate, and it had potential application in controlled release as a drug carrier.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00449-009-0349-2DOI Listing

Publication Analysis

Top Keywords

sodium alginate
16
alginate
8
controlled release
8
polybutyl methacrylate
8
modified alginate
8
release behavior
8
hydrophobic modification
4
sodium
4
modification sodium
4
alginate application
4

Similar Publications

A novel DES-enhanced sodium alginate-based conductive organohydrogel fiber for high-performance wearable sensors.

Int J Biol Macromol

January 2025

College of Textile and Clothing Engineering, Soochow University, 199 Ren-ai Road, Suzhou 215123, China; Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), 215123, China; State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China. Electronic address:

Conductive organohydrogel fibers based on sodium alginate (SA) exhibit remarkable flexibility and electrical conductivity, making them ideal candidates for conformal skin adhesion and real-time monitoring of human activity signals. However, traditional conductive hydrogels often suffer from issues such as uneven distribution of conductive fillers, and achieving the integration of high mechanical strength, stretchability, and transparency using environmentally friendly methods remains a significant challenge. In this study, a novel and sustainable strategy was developed to fabricate dual-network organohydrogel fibers using sodium alginate as the primary material.

View Article and Find Full Text PDF

Development of multifunctional PAA-alginate-carboxymethyl cellulose hydrogel-loaded fiber-reinforced biomimetic scaffolds for controlled release of curcumin.

Int J Biol Macromol

January 2025

MEMS and Nanotechnology Laboratory, School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea; Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea; Center for Next-Generation Sensor Research and Development, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea. Electronic address:

Critical-sized bone defects in osteosarcoma treatment demand multifunctional scaffolds that must effectively integrate two key functions, promoting osteogenesis and delivering targeted chemoprevention. This study introduces a dual-component system featuring pH-responsive hydrogels and hydroxyapatite-based fiber-reinforced biomimetic scaffolds designed for controlled and localized curcumin delivery, while addressing its solubility and stability issues. The hydrogel system comprises a double network of polyacrylic acid, sodium alginate, carboxymethyl cellulose, and potato starch, specifically modified to encapsulate curcumin.

View Article and Find Full Text PDF

The main objective of this study is to prepare sodium alginate (SA)-based biofilms incorporated with watercress oil (WCO) as an antimicrobial material for sustainable food packaging. The physicochemical, antioxidant, and antibacterial properties of the prepared bio-based films were investigated. The antioxidant activity showed a remarkable increase, with DPPH inhibition increasing from 13.

View Article and Find Full Text PDF

Characterization and application of fluorescent hydrogel films with superior mechanical properties in detecting iron(Ⅲ) ions and ferroptosis in oral cancer.

Front Bioeng Biotechnol

January 2025

Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China.

A one-step hydrothermal method was applied to prepare carbon dots (CDs) with superior fluorescence properties using chitosan as a carbon source. The as-prepared carbon dots were then grafted onto a sodium alginate-gelatin hydrogel film to form a fluorescent hydrogel film (FHGF), emitting at 450 nm under excitation of 350 nm light. In comparison to the CDs, the fluorescence intensity of this film was maintained over 90.

View Article and Find Full Text PDF

Sodium alginate/low methoxyl pectin composite hydrogel beads prepared via gas-shearing technology for enhancing the colon-targeted delivery of probiotics and modulating gut microbiota.

Int J Biol Macromol

January 2025

College of Food Science and Engineering, Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Northwest A&F University, Yangling 712100, Shaanxi, China. Electronic address:

The probiotic encapsulation system has the potential to enhance the prebiotic effects of probiotics. However, challenges arise from the release behavior of this system in vivo and the large size of hydrogel beads. This study aims to address the issues related to the size of previous hydrogel beads and assess the colon-targeted delivery of probiotic polysaccharides composite hydrogel beads (PPHB).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!