Optical projection tomography is a three-dimensional imaging technique that has been recently introduced as an imaging tool primarily in developmental biology and gene expression studies. The technique renders biological sample optically transparent by first dehydrating them and then placing in a mixture of benzyl alcohol and benzyl benzoate in a 2:1 ratio (BABB or Murray s Clear solution). The technique renders biological samples optically transparent by first dehydrating them in graded ethanol solutions then placing them in a mixture of benzyl alcohol and benzyl benzoate in a 2:1 ratio (BABB or Murray s Clear solution) to clear. After the clearing process the scattering contribution in the sample can be greatly reduced and made almost negligible while the absorption contribution cannot be eliminated completely. When trying to reconstruct the fluorescence distribution within the sample under investigation, this contribution affects the reconstructions and leads, inevitably, to image artifacts and quantification errors.. While absorption could be reduced further with a permanence of weeks or months in the clearing media, this will lead to progressive loss of fluorescence and to an unrealistically long sample processing time. This is true when reconstructing both exogenous contrast agents (molecular contrast agents) as well as endogenous contrast (e.g. reconstructions of genetically expressed fluorescent proteins).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2794886PMC
http://dx.doi.org/10.3791/1389DOI Listing

Publication Analysis

Top Keywords

optical projection
8
projection tomography
8
technique renders
8
renders biological
8
optically transparent
8
transparent dehydrating
8
placing mixture
8
mixture benzyl
8
benzyl alcohol
8
alcohol benzyl
8

Similar Publications

Anion photoelectron velocity-map imaging using a tunable laser at a 100 kHz repetition rate.

J Chem Phys

January 2025

Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.

We present velocity-map imaging (VMI) of photoelectrons detached from anions using an optical parametric amplifier operating at a repetition rate as high as 100 kHz. The light source generates femtosecond (fs) laser pulses tunable from near-infrared to ultraviolet (310-2600 nm), which interact synchronously with mass-selected anion bunches. We demonstrate this technique by measuring two-dimensional projections of photoelectrons ejected from silver trimer anions, Ag3-, across a photon energy range from 2.

View Article and Find Full Text PDF

Globally, breast cancer continues to be the leading type of cancer affecting women, with rising mortality rates projected by 2030. This highlights the importance of developing new, affordable treatments, like drug delivery systems that use nanoparticles. Gold nanoparticles (AuNPs), including their exceptional optical and physical attributes, make them an attractive vehicle for targeted treatment, allowing for accurate and focused delivery of medication directly to cancerous cells while reducing harmful side effect.

View Article and Find Full Text PDF

When rendering the visual scene for near-eye head-mounted displays, accurate knowledge of the geometry of the displays, scene objects, and eyes is required for the correct generation of the binocular images. Despite possible design and calibration efforts, these quantities are subject to positional and measurement errors, resulting in some misalignment of the images projected to each eye. Previous research investigated the effects in virtual reality (VR) setups that triggered such symptoms as eye strain and nausea.

View Article and Find Full Text PDF

Sighting dominance is an important behavioral property which has been difficult to measure quantitatively with high precision. We developed a measurement method that is grounded in a two-camera model that satisfies these aims. Using a simple alignment task, this method quantifies sighting ocular dominance during binocular viewing, identifying each eye's relative contribution to binocular vision.

View Article and Find Full Text PDF

This paper presents an effective three-dimensional (3D) surface reconstruction technique aimed at profiling composite surfaces with both specular and diffuse reflectance. Three-dimensional measurements based on fringe projection techniques perform well on diffuse reflective surfaces; however, when the measurement targets contain both specular and diffuse components, the efficiency of fringe projection decreases. To address this issue, the proposed technique integrates digital holography into the fringe projection setup, enabling the simultaneous capture of both specular and diffuse reflected light in the same optical path for full-field surface profilometry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!