Photocatalytic removal of methyl orange under ultraviolet radiation has been studied using attapulgite (ATT) composites, which were synthesized by depositing SnO(2)-TiO(2) hybrid oxides on the surface of ATT to form a composite photocatalyst (denoted ATT-SnO(2)-TiO(2)) using an in situ sol-gel technique. Results showed that SnO(2)-TiO(2) nanocomposite particles with average size of about 10nm were loaded successfully on to the surface of ATT fibers and were widely dispersed. Correspondingly, the photocatalytic activity of ATT was improved significantly by loading SnO(2)-TiO(2). The photoactivity of the composite photocatalyst decreased in the sequence ATT-SnO(2)-TiO(2)>ATT-SnO(2)>ATT-TiO(2)>ATT. In order to achieve the best photocatalyst, the molar ratio of SnO(2) and TiO(2) in the ATT-SnO(2)-TiO(2) composites was adjusted to give a series with proportions r=n(Ti)/(n(Ti)+n(Sn))=0.0, 0.25, 0.33, 0.50, 0.67, 0.75, 0.80, 0.82, 0.86, 1.0. Results indicated that the proportion of SnO(2) and TiO(2) had a critical effect on the photocatalytic activity, which increased as the content of TiO(2) increased to r
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2009.05.140 | DOI Listing |
Sci Rep
January 2025
Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia, Iran.
This study investigates the biosynthesis of iron oxide nanoparticles (FeONPs) using the cell-free supernatant of Pseudomonas fluorescens. The synthesized FeONPs were characterized through UV-VIS, XRD, FTIR, FESEM, EDX, TEM, BET, and VSM analyses. The XRD results confirmed that FeONPs were successfully synthesized and EDX analysis indicated that iron accounted for 89.
View Article and Find Full Text PDFHeliyon
December 2024
College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, China.
Nanoparticles have been extensively studied for many years due to their important roles in catalysis, metallurgy and high temperature superconductors. But, Nanoparticles are extremely unstable and easily react with other substances. So, to control the size and the shape of nanoparticles they must be stabilized.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Amity Institute of Pharmacy, Amity University Haryana, Amity Education Valley, Panchgaon, Manesar, Gurugram, Haryana 122413, India. Electronic address:
Climate change, the overconsumption of fossil fuels, and rapid population and economic growth have collectively driven a growing emphasis on environmental sustainability and the need for effective resource management. Chemicals or materials not currently regulated are known as contaminants of emergent concern (CECs). Nevertheless, wastewater is thought to be its main source, and worries about its probable presence in the environment are growing due to its potential damage to human and environmental health.
View Article and Find Full Text PDFChemosphere
January 2025
Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy.
This research aims to design a novel selective and multifunctional adsorbent based on Al/Cu modified hemp fibres as a novel and multifunctional adsorbent for removing different classes of pollutants. The adsorbent, which was widely characterized, was shown to be more effective in removing anionic dyes compared to cationic ones. Among the tested dye, methyl orange was selected to understand how different parameters, such as temperature (20-80°C), contact time, pH (2-12), initial dye concentration (50-300 ppm), salinity and adsorbent dosage (1-10 g/L) affect the removal capacity.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Materials Polymer Laboratory, Macromolecular Chemistry Department, Faculty of Chemistry, University of Sciences and Technology Houari Boumediene USTHB, B.P. 32 El-Alia, 16111 Algiers, Algeria.
Herein, we propose magnetic nanocomposites as a powerful new catalyst for organic pollutant reduction. Polypyrrole (PPy) was synthesized in situ within the semi-interpenetrating alginate (Alg)/gelatin (Ge) network in presence of α-FeO as encapsulating matrix and inorganic filler, respectively. The polymeric matrix can act as bifunctional agent such as a binder and stabilizer to improve nanocatalyst stability while preserving their catalytic/magnetic performances.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!