To enhance the medicinal activity of bee venom (BV) acupuncture, bee venom was loaded into biodegradable poly(D,L-lactide-co-glycolide) nanoparticles (BV-PLGA-NPs) by a water-in-oil-in-water-emulsion/solvent-evaporation technique. Rat formalin tests were performed after subcutaneous injection of BV-PLGA-NPs to the Zusanli acupuncture point (ST36) at 0.5, 1, 2, 6, 12, 24, and 48 h before plantar injection of 2% formalin. BV-PLGA-NPs treatment showed comparable analgesic activity to typical BV acupuncture during the late phase, compared with saline-treated controls, and the analgesic effect lasted for 12h. PLGA-encapsulation was also effective in alleviating the edema induced by allergens in bee venom. These results indicate that PLGA-encapsulation provided a more prolonged effect of BV acupuncture treatment, while maintaining a comparable therapeutic effect.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2009.06.034DOI Listing

Publication Analysis

Top Keywords

bee venom
16
prolonged analgesic
4
analgesic plga-encapsulated
4
bee
4
plga-encapsulated bee
4
venom
4
venom formalin-induced
4
formalin-induced pain
4
pain rats
4
rats enhance
4

Similar Publications

Melittin-Induced Structural Transformations in DMPG and DMPS Lipid Membranes: A Langmuir Monolayer and AFM Study.

Molecules

December 2024

Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, ul. Zwirki i Wigury 101, 02-089 Warsaw, Poland.

In this study, we explore the interactions between melittin, a cationic antimicrobial peptide, and model lipid membranes composed of the negatively charged phospholipids 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) and 1,2-dimyristoyl-sn-glycero-3-phosphoserine (DMPS). Using the Langmuir monolayer technique and atomic force microscopy (AFM), we reveal novel insights into these interactions. Our key finding is the observation of the ripple phase in the DMPS bilayer on mica, a phenomenon not previously reported for negatively charged single bilayers.

View Article and Find Full Text PDF

venom allergy (HVA) is an IgE-mediated hypersensitivity reaction caused by species stings (honeybee, vespid, or ant). The only effective treatment is venom immunotherapy (VIT). Our study aimed to evaluate whether humoral and cellular biomarkers measured before, during, and after honeybee VIT are associated with the success of VIT, which was assessed by the response to a sting challenge one year after finishing VIT.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA), a condition characterized by joint deterioration through the action of matrix metalloproteinases (MMPs), is prevalent worldwide. Bee venom (BV) has traditionally been used in Chinese medicine for pain, arthritis, rheumatism, skin diseases, etc. BV is enriched with active substances, notably melittin and phospholipase A2 (PLA2), offering significant therapeutic potential.

View Article and Find Full Text PDF

Objectives: To estimate the lifetime prevalence of first and recurrent systemic allergic reaction to bee venom among Slovenian beekeepers. Additionally, we aimed to elucidate the risk factors predisposing beekeepers to developing systemic allergic reaction to bee venom.

Methods: A nationwide cross-sectional study was conducted among 1,080 beekeepers who are members of the Slovenian beekeeper's association, between 1 November 2021 and 31 May 2023.

View Article and Find Full Text PDF

Melittin (MEL) is the main bioactive component of bee venom and has been reported to have various pharmacological effects. This study investigates the protective effect of MEL on MPP-injured HT22 cells and the possible mechanisms involved. We treated the cells with 4 mM MPP for 24 h to induce a cellular injury model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!