Solvent free synthesis of 1,3-diaryl-2-propenones catalyzed by commercial acid-clays under ultrasound irradiation.

Ultrason Sonochem

Laboratory of Applied Chemistry: Heterocycles, Fats and Polymers, Faculté des sciences de Sfax, Route de Soukra Km 3,5 - BP 1171, 3000 Sfax, Tunisia.

Published: January 2010

This paper presents a novel solvent free method of synthesis of trans-chalcones. The method was based on ultrasound irradiation of the reagents (aryl methyl ketones and aryl aldehydes) in presence of commercial acid-montmorillonites as catalysts. The trans-chalcones were synthesized in high yields (85-95%) and excellent selectivity in a short reaction time.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultsonch.2009.06.008DOI Listing

Publication Analysis

Top Keywords

solvent free
8
ultrasound irradiation
8
free synthesis
4
synthesis 13-diaryl-2-propenones
4
13-diaryl-2-propenones catalyzed
4
catalyzed commercial
4
commercial acid-clays
4
acid-clays ultrasound
4
irradiation paper
4
paper presents
4

Similar Publications

Novel technique to produce porous thermochromic VO nanoparticle films using gas aggregation source.

Sci Rep

January 2025

Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00, Prague 8, Czech Republic.

Vanadium dioxide (VO) is a phase transition material that undergoes semiconductor-to-metal transition at the temperature of about 68 °C. This extraordinary feature triggered intensive research focused on the controlled synthesis of VO. In this study, we introduce and investigate an original linker- and solvent-free strategy enabling the production of highly porous VO nanoparticle-based films.

View Article and Find Full Text PDF

Chondroitin sulfate (CS) is a structurally complex anionic polysaccharide widely used in medical, cosmetic and food applications. Enzymatic catalysis is an important strategy for synthesizing CS with uniform chain lengths and well-defined structures. However, the industrial application of glycosyltransferases is hindered by limitations such as low expression yields, poor stability, and challenges in reuse.

View Article and Find Full Text PDF

Ion Networks in Water-based Li-ion Battery Electrolytes.

Acc Chem Res

January 2025

Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Korea.

ConspectusWater-in-salt electrolytes (WiSEs) are promising electrolytes for next-generation lithium-ion batteries (LIBs), offering critical advantages like nonflammability and improved safety. These electrolytes have extremely high salt concentrations and exhibit unique solvation structures and transport mechanisms dominated by the formation of ion networks and aggregates. These ion networks are central to the performance of WiSEs, govern the transport properties and stability of the electrolyte, deviating from conventional dilute aqueous or organic electrolytes.

View Article and Find Full Text PDF

Eco-friendly, bioactive and edible films from renewable resources are increasingly regarded as viable replacements for petroleum-based packaging. This study investigates the application of macroalgae powder (ULP) as an active additive in crab () chitosan-based films for natural food packaging. Films with ULP concentrations of 0.

View Article and Find Full Text PDF

A Co-Blended and Compounded Photosensitive Resin with Improved Mechanical Properties and Thermal Stability for Nail Polish Application.

Polymers (Basel)

December 2024

Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.

UV-curable bio-based resins are widely used in the UV curing field. However, the current UV-curable bio-based resins for the application of nail polish still have the problems of too high viscosity and insufficiently excellent mechanical properties. In this study, a soybean oil-based acrylate photosensitive resin is synthesized by using epoxidized soybean oil as a raw material and reacting it with acrylic acid.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!