Background: Interleukin (IL)-17F is involved in lung inflammation, but the effect of IL-17F on endothelial permeability and its signaling pathway remain ill-defined. The current study sought to investigate the effect of IL-17F on endothelium and assess the role of protein kinase C (PKC) and src-suppressed C kinase substrate (SSeCKS) in this process.
Methods: Rat pulmonary microvascular endothelial monolayers were constructed to determine changes of permeability as measured by means of FITC-dextran and Hank's solution flux across monolayers and transendothelial electrical resistance with or without IL-17F and PKC inhibitors. Additional monolayers were stained using FITC-phalloidin for filamentous actin (F-actin). The gene expression of SSeCKS was analyzed by the reverse transcription-polymerase chains. Alterations of SSeCKS protein were investigated by immunoblotting and immunoprecipitation.
Results: IL-17F increased endothelial monolayer permeability in a dose- and time-dependent manner. F-actin staining revealed that permeability changes were accompanied by reorganization of cytoskeleton. In the presence of PKC inhibitors, the IL-17F-induced hyperpermeability and reorganization of F-actin were attenuated. The gene and protein expression of SSeCKS were conspicuously elevated after IL-17F challenge. The process of SSeCKS phosphorylation followed a time course that mirrored the time course of hyperpermeability induced by IL-17F. IL-17F-induced SSeCKS phosphorylation was abrogated after PKC inhibitors pretreatment. The translocation of SSeCKS from the cytosol to the membrane and a significant increase in the SSeCKS association with the cytoskeleton were found after IL-17F treatment.
Conclusions: IL-17F is an important mediator of increased endothelial permeability. PKC and SSeCKS are integral signaling components essential for IL-17F-induced hyperpermeability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jss.2009.01.019 | DOI Listing |
Sci Adv
January 2025
Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
Tigilanol tiglate (EBC-46) is a selective modulator of protein kinase C (PKC) isoforms that is Food and Drug Administration (FDA) approved for the treatment of mast cell tumors in canines with up to an 88% cure rate. Recently, it has been FDA approved for the treatment of soft tissue sarcomas in humans. The role of EBC-46 and, especially, its analogs in efforts to eradicate HIV, treat neurological and cardiovascular disorders, or enhance antigen density in antigen-targeted chimeric antigen receptor-T cell and chimeric antigen receptor-natural killer cell immunotherapies has not been reported.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
January 2025
Department of Pharmacology, University of Alberta, Edmonton, Canada. Electronic address:
Protein kinase C (PKC) signalling has been shown to be dysregulated in various cancers including acute lymphoblastic leukemia (ALL). We have previously determined that changes in the expression levels of SLC43A3-encoded equilibrative nucleobase transporter 1 (ENBT1) can significantly alter 6-mercaptopurine (6-MP) toxicity in ALL cells. 6-MP is a common drug used in ALL chemotherapy.
View Article and Find Full Text PDFJCI Insight
January 2025
Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, United States of America.
Aortic dissection or rupture is a major cause of mortality in vascular Ehlers-Danlos Syndrome (vEDS), a connective tissue disorder caused by heterozygous mutations in the COL3A1 gene. C57BL6/J (BL6) mice carrying the Col3a1 G938D/+ mutation recapitulate the vEDS vascular phenotype and die suddenly of aortic rupture/dissection. However, 129S6/SvEvTac (129) mice expressing the same Col3a1 G938D/+ mutation show near-complete life-long protection from vascular rupture.
View Article and Find Full Text PDFJ Pharmacol Sci
February 2025
Department of Cellular Pharmacology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Nishi 7, Kita 15, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan; Department of Neuropharmacology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Nishi 7, Kita 15, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan.
Cytotoxic effects of cigarette smoke are thought to be causes of cigarette smoking-related diseases such as respiratory infection, chronic obstructive pulmonary disease, and atherosclerosis. Unsaturated carbonyl compounds are major cytotoxic factors in the gas phase of cigarette smoke. Cell death induced by unsaturated carbonyl compounds in cigarette smoke is PKC-dependent ferroptosis.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Pharmacology and Therapeutic Innovation, School of Pharmaceutical Sciences, Nagasaki University, Nagasaki 852-8521, Japan.
The receptor transporter protein 4 (RTP4) is a receptor chaperone protein that targets class A G-protein coupled receptor (GPCR)s. Recently, it has been found to play a role in peripheral inflammatory regulation, as one of the interferon-stimulated genes (ISGs). However, the detailed role of RTP4 in response to inflammatory stress in the central nervous system has not yet been fully understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!